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Special Feature

Quantitative approaches to computational vaccinology

I R I N I  A  D O Y T C H I N O V A  a n d  D A R R E N  R  F L O W E R

Edward Jenner Institute for Vaccine Research, Compton, Berkshire, United Kingdom

Summary This article reviews the newly released JenPep database and two new powerful techniques for T-cell
epitope prediction: (i) the additive method; and (ii) a 3D–Quantitative Structure Activity Relationships (3D–QSAR)
method, based on Comparative Molecular Similarity Indices Analysis (CoMSIA). The JenPep database is a family
of relational databases supporting the growing need of immunoinformaticians for quantitative data on peptide
binding to major histocompatibility complexes and to the Transporters associated with Antigen Processing (TAP).
It also contains an annotated list of T-cell epitopes. The database is available free via the Internet (http://
www.jenner.ac.uk/JenPep). The additive prediction method is based on the assumption that the binding affinity of a
peptide depends on the contributions from each amino acid as well as on the interactions between the adjacent and
every second side-chain. In the 3D–QSAR approach, the influence of five physicochemical properties (steric bulk,
electrostatic potential, local hydrophobicity, hydrogen-bond donor and hydrogen-bond acceptor abilities) on the
affinity of peptides binding to MHC molecules were considered. Both methods were exemplified through their
application to the well-studied problem of peptides binding to the human class I MHC molecule HLA-A*0201.
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Introduction

One of the principal goals of bioinformatic research within
immunology is to develop computer-aided vaccine design, or
computational vaccinology, as a practical science applied to
the quest for new vaccines. The recognition of antigenic
epitopes by the immune system, either small discrete T-cell
epitopes or large conformational epitopes recognized by B
cells and soluble antibodies, is the key molecular event at the
heart of the immune response to pathogens. Within the
development of rational vaccine design, the rapid and reliable
identification of epitopes, particularly T-cell epitopes, is
currently the focus of considerable endeavour.

Within the context of cellular immunology, the immuno-
genicity of peptides strongly depends on their ability to bind
to MHC and to be recognized subsequently by TCR.1 Tradi-
tionally, T-cell epitopes have been identified by examining
T-cell responses to overlapping peptides generated from
target antigens. This is adequate, if labour intensive, for the
study of a single, small protein, but the experimental over-
head becomes prohibitive for the study of genomes from large
viruses, bacteria or parasites, which may contain thousands, if
not tens of thousands, of gene products. The computational
analysis of a pathogenic proteome can, through the prediction
of peptide binding to MHC proteins, reduce significantly
subsequent experimental work. Immunoinformatics, a newly
emergent branch of bioinformatics, offers a range of tech-
niques suitable for T-cell epitope searches and predictions.
Experimental work suggests that only peptides that bind with
high affinity to MHC molecules are recognized as T-cell

epitopes.2 In terms of a competition assay, the IC50 (the
concentration required for 50% inhibition of a standard
labelled peptide by the test peptide) must be less than
500 nmol/L. As only peptides that bind well to MHC can
become T-cell epitopes, MHC-binding prediction is a neces-
sary preliminary to the identification of such epitopes. In what
follows, we use the terms ‘MHC binding’ and ‘T-cell epitope
identification’ synonymously. A broad spectrum of pre-
dictive methods is currently available.3 These began with the
development of the early motif searching methods,4,5 and
include a variety of ever more sophisticated approaches:
peptide-scoring schemes based on the hypothesis for inde-
pendent binding of side-chains (IBS-hypothesis);6,7 the artifi-
cial neural networks (ANN);8 free energy scoring function
(Fresno);9 and positional scanning–synthetic combinatorial
libraries (PS–SCL).10,11

In this article we review our contribution to the rapidly
developing field of computational vaccinology, including a
discussion of our newly released JenPep database and two
powerful new techniques for T-cell epitope prediction. One
is a 2D–Quantitative Structure Activity Relationships
(2D–QSAR) approach, which we have called the ‘additive’
method,12 and the other is a 3D–QSAR approach, based
on Comparative Molecular Similarity Indices Analysis
(CoMSIA).13,14

JenPep

The JenPep database is a family of relational databases
supporting the growing needs of immunoinformaticians for
quantitative data on peptide binding to MHC and to the TAP
peptide transporter, as well as an annotated list of T-cell
epitopes.15 The database, and a hypertext markup language
(HTML) interface for searching, is available free via the
Internet (http://www.jenner.ac.uk/JenPep).
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The currently available version of JenPep (Version 1.0) is
composed of three subdatabases: (i) a compilation of quanti-
tative binding measures for peptides to class I and class II
MHC; (ii) a compendium of dominant and subdominant
T-cell epitopes; and (iii) a set of quantitative data for peptide
binding to the TAP peptide transporter. The T-cell section
contains 2300 T-cell epitopes, the MHC binding section
contains 6000 peptides and the TAP section covers 400
peptides. JenPep contains binding data on a wide variety of
different MHC alleles: for class I MHC molecules, JenPep
has data for 68 different restriction alleles with more than 50
genotype variations. For class II MHC molecules there are
over 40 restriction alleles with 52 genotype designations.
Peptide lengths for class I MHC molecules are in the range of
7–16 residues and for class II MHC molecules are in the
range of 9–35 residues. The database itself is a relational
system, currently constructed using MS ACCESS and is
searchable through a graphical user interface (GUI) built
using active server pages (ASP). Together with the peptide
sequence, JenPep includes various kinds of binding measures,
MHC restriction and, where such data are known, the protein
from which the peptide originates. Data on T-cell epitopes are
currently limited to a list of binders. While there are many
different ways to identify T-cell epitopes, including T-cell
killing, proliferation assays such as thymidine uptake, and so
on, the quantitative data produced by such assays, are not
consistent enough to be used outside of particular experimen-
tal conditions. Since there is no real meaning to the idea of a
partial T-cell epitope, we have relied on the immunological
judgement of experimental immunologists to define what are,
or are not, T-cell epitopes. For MHC binding we have used a
number of alternative measures of binding affinity, which are
currently in common currency. These include radio-
labelled16–18 and fluorescent19–21 IC50 values, BL50

22–24 (half
maximal binding level calculated from a mean fluorescence
intensity MFI of  MHC-expressing RMA-S cells) and SC50

25–27

(the concentration inducing half of the maximal up-regulating
effect calculated in a peptide-binding stabilization assay), and
half-lives.6,28,29

We are actively developing the database beyond its current
limitations, and expect to release a much larger and more
complete quantitative database in due course. Much useful
data are still locked into written, hard-copy literature, presented
as tabulated values or in a graphical form. It is an on-going
challenge to find and extract these data into a machine-readable
format. We also look forward to the day when immunologists
submit their experimental binding data to an online archive,
such as ours, much as molecular biologists must submit their
data to a publicly curated sequence database. JenPep is the
first database in immunology to concentrate on quantitative
measurements, complementing existing systems. This compi-
lation of binding data underlies our attempts to derive statisti-
cally sound QSAR tools for the accurate prediction of peptide
binding to immunological molecules.

2D–QSAR method for binding affinity prediction

One of the predictive techniques developed in our group is
based on the so-called additivity concept, whereby each
substituent makes an additive and constant contribution to the
biological activity regardless of variation in the rest of the

molecule.30 The IBS hypothesis, developed by Parker,6,7,31 is
the immunological analogue of this idea. We extended this
concept by adding additional terms that account for near-
neighbour side-chain interactions.12 The binding affinity of a
peptide will depend on contributions from each amino acid as
well as their interactions with adjacent and every second side-
chain: (1)

where the const accounts, at least nominally, for the peptide

backbone contribution, is the sum of amino acids contri-

butions at each position,  is the sum of adjacent

peptide side-chain interactions, and  is the sum of

every second side-chain interaction.

Four hundred and twenty IC50 values for 340 nonamer
peptides were used in the development of the additive
method. The peptide sequences and their binding affinities to
the HLA-A*0201 molecule were extracted from the JenPep
database. Eighty IC50 values are higher than 500 nmol/L (low
binders), 182 values are between 50 and 500 nmol/L (inter-
mediate binders) and 158 are less than 50 nmol/L (high
binders). More than one IC50 value was found for some of the
peptides. The binding affinities (IC50 values) were originally
obtained from a quantitative assay, based on the inhibition of
binding of a radiolabelled standard peptide to detergent-
solubilized MHC molecules.16,17 As is common practice
amongst QSAR practitioners, IC50 values were converted to
p-units (negative decimal logarithm). Many amino acids are
present at a certain position only once. However, by disre-
garding these single amino acids, one runs the risk of elimi-
nating legitimate predictors. This problem will be minimized
as the size of our database increases.

The development of the additive method is described in
Fig. 1. A program was developed to transform the nine amino
acid peptide sequence into a row of the table presented in
Fig. 1. A term is equal to 1 when a certain amino acid at a
certain position, or a certain interaction exists, and 0 when
they are absent. Thus a matrix of 420 rows and 6180 columns
was generated. One hundred and eighty columns account for
the contributions of the amino acids (20 amino acids × 9
positions), 3200 for the adjacent side-chains, or 1–2 inter-
actions (20 × 20 × 8), and 2800 for the 1–3 side-chain inter-
actions (20 × 20 × 7). To reduce the number of columns, the
program omits columns that contain only zeros. The final
matrix consists of 420 rows and 2158 columns. To resolve
this matrix requires prohibitive amounts of computer time,
and so we divided the equation into three:

(2)

(3)

(4)

Equation 3 gives the amino acid contributions, while equa-
tions 4 and 5 give the contributions for side-chain inter-
actions. The contributions of the interactions below ±0.030
were omitted and the three equations were combined into one.
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As the columns are more numerous than the rows, the
equations were solved using partial least square (PLS), as
implemented in SYBYL 6.7.32 pIC50 was added as a depend-
ent variable. The predictive power was assessed by the
cross-validated q2 (as generated by ‘leave-one-out’ cross-
validation [LOO-CV]), standard error of predictions (SEP)
and residuals between the experimental and predicted by
LOO-CV pIC50 values. According to the residuals, pep-
tides could be classified into three categories: (i) very
well-predicted peptides with |residuals| ≤ 0.5; (ii) well-
predicted peptides with |residuals| between 0.5 and 1.0;
and (iii) poorly predicted peptides with |residuals| > 1.0. A
mean |residual| value and standard deviation for the set was
also calculated. The non-cross-validated model was
assessed by multiple linear regression (MuLR) parameters:

explained variance (r2), standard error of estimate (SEE)
and F ratio.

The final equation derived by the additive method consists
of 1815 terms including the constant. It contains the contribu-
tions of the amino acids and the contributions of the sig-
nificant side-chain interactions. Its LOO-CV and MuRL
parameters are given in Table 1. In the cases of multiple pIC50

values for one peptide, the pIC50 pred were calculated omitting all
available pIC50exp values. There were 172 very well-predicted
peptides (50.5%), 128 well-predicted peptides (37.5%) and only
41 poorly predicted peptides (12.0%). The contributions of the
amino acids at different positions are presented in Fig. 2. The
contributions of the more important adjacent or 1–2 side-chain
interactions are plotted in Fig. 3a, and the more important 1–3
side-chain interactions are in Fig. 3b.

Figure 1 Protocol of the additive method.
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Figure 2 Amino acid contributions to HLA-A*0201 binding affinity according to the additive method.
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3D–QSAR method for binding affinity prediction

One of the most reliable methods for investigating the structure-
activity trends within sets of biological molecules is
3D–QSAR.33,34 The explanatory power of 3D–QSAR methods
is considerable, manifest not only in their ability to accurately
predict binding affinities, but also in their capacity to display
advantageous and disadvantageous 3-D interaction potential
mapped onto the structures of molecules being investigated.
We have applied the 3D–QSAR method (CoMSIA)35–38 to
gain an understanding of the relationship between physico-
chemical properties (steric bulk, electrostatic potential, local
hydrophobicity, hydrogen-bond donor and hydrogen-bond
acceptor abilities) and the affinities of peptides that bind to
the MHC molecule HLA-A*0201.13,14

Two hundred and sixty-six nonamer peptides are included
in the CoMSIA study. Their IC50 values were collected from
the JenPep database and converted to p-units. All molecular
modelling and QSAR calculations were performed on a
Silicon Graphics octane workstation using the SYBYL 6.7
molecular modelling software.32 The X-ray structure of the
nonameric viral peptide TLTSCNTSV39 was used as a starting
conformation. The structures of the remaining peptides were
built to this conformation. The partial atomic charges used in
CoMSIA were computed using the AM1 semiempirical
method,40 available in MOPAC. A sybyl programming lan-
guage (SPL) script for automatic building, optimization and
AM1 calculation of the peptides was created within SYBYL.
The program uses a text file containing the peptide sequences
and a protein databank (pdb) file of the starting conformation.

Five types of similarity index (steric, electrostatic, hydro-
phobic, and hydrogen-bond donor and acceptor) were

calculated, using a common probe atom with 1 Å radius,
charge +1, hydrophobicity +1, hydrogen-bond donor and
acceptor properties +1.35–38 Since only the combination of all
fields provided a complete insight, only an all-fields model
was analysed further. The same parameters as for the additive
method were used to assess the predictive power of the final
model: q2, SEP and residuals (Table 1). Three types of cross-
validation were performed: (i) LOO-CV; (ii) CV in five
groups; and (iii) CV in two groups. The non-cross-validated
model was assessed by r2, SEE and F-ratio. A bootstrap
analysis41 was performed in 20 runs and the mean r2 is given
as r2

bootstrap. The non-cross-validated model was used to
display the coefficient contour maps.

The initial CV model had low q2 and r2 values. This result
was not surprising, given the great diversity of peptides
collected from a variety of sources. One hundred and fifty-
one were very well-predicted peptides (with |residuals| ≤ 0.5),
83 were well-predicted peptides (with |residuals| between 0.5
and 1.0), and 32 peptides were poorly predicted (with
|residuals| > 1.0). The mean |residual| was 0.553. The model
was improved by excluding a limited number of poorly
predicted peptides in a stepwise manner, beginning with the
peptide with the highest residual. The final CV model had
significantly higher parameter values: q2 = 0.683 at seven
components and r2 = 0.891. This model was used to predict
the binding affinities of the excluded peptides. The predic-
tions were better not only for the group of very well-predicted
peptides, but also for the group of poorly predicted peptides.
The mean |residual| value for this model was 0.489.

Table 1 Statistics of the additive and Comparative Molecular
Similarity Indices Analysis (CoMSIA) models for HLA-A*0201
binding

Parameter Additive method CoMSIA

n 340 266
q2

LOO 0.337 0.683
q2

CV5* – 0.656
q2

LHO† – 0.558
NC 5 7
SEPLOO 0.726 0.443
r2 0.898 0.891
r2

bootstrap‡ – 0.924
SEE 0.285 0.260
F-ratio 588.883 265.082
Fractions

Steric – 0.145
Electrostatic – 0.320
Hydrophobic – 0.210
Hydrogen-bond donor – 0.161
Hydrogen-bond acceptor – 0.164

Residuals
Residual ≤ |0.5| 172 (63.2%) 168 (50.5%)
|0.5| < residual ≤ |1.0| 128 (29.3%) 78 (37.5%)
Residual > |1.0| 40 (7.5%) 20 (12.0%)
Mean |residual| 0.573 0.489
Standard deviation 0.442 0.462

*Mean value of 20 runs; †mean value of 50 runs; ‡mean value of
20 runs; LOO, ‘leave-one-out’ cross-validation; SEP, standard error
of predictions; SEE, standard error of estimate. Figure 3 Contributions of some of the more important (a) adja-

cent; and (b) every second side-chain interactions according to the
additive method. The presented contributions are above ±0.15.
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The statistical stability of the final CoMSIA model was
tested by CV in two and five groups. The mean q2 value of 20
runs for a CV in five groups was 0.656, which is very close to
the LOO-CV value. The ‘leave-half-out’ CV (CV in two
groups) gave a lower value for q2 (the mean of 50 runs is
0.558), but it is still close to the other two q2 values. From the
fractions of the fields, the electrostatic and hydrophobic fields
have the greatest influence, followed by the hydrogen-bond-
formation fields and the steric field.

The visualization of the results from the CoMSIA analysis
has been performed using the ‘StDev*Coeff’ mapping option
contoured by actual values, and the peptide FLYGALALA
(pIC50 = 8.620, one of the very well-predicted high binders) is
shown inside the different fields in Fig. 4. The peptide is
positioned with the N-terminus to the left.42 Positions within
the peptide are defined as P1 to P9. The contours of the
CoMSIA steric map are shown in green (more bulk is
favoured) and yellow (less bulk is favoured). The electrostatic
map has red (negative potential is favoured) and blue (posi-
tive potential is favoured) coloured contours, and CoMSIA
hydrophobic fields are coloured yellow (hydrophobic amino
acids enhance affinity) and white (hydrophilic groups enhance
affinity). The hydrogen-bond field contours show regions
where hydrogen-bond acceptors (cyan) on the receptor
(hydrogen-bond donors on the ligand) and hydrogen-bond
donors (magenta) on the receptor (hydrogen-bond acceptors on
the ligand) enhance the binding. (The Tripos implementation

of CoMSIA uses a nomenclature opposite to that used in Ref.
37, in accordance with modifications made by the original
authors).

As is evident from Fig. 4, steric bulk is well tolerated at
P1, and there are also significant favourable areas at P2, P3,
P5 and P6. Disfavoured areas exist at P4, P7 and P8. In the
electrostatic map, negative potentials are favoured at most
positions, while disfavoured regions lie between P3 and P5,
and at P8. Areas of favourable local hydrophobicity exist at
P1, P3, P5, P6, P8 and P9. Favoured hydrophilic groups are
located at P4 and P9. Hydrogen-bond donor fields on the
ligand are favoured around P3 and at P4; hydrogen-bond
acceptor fields on the ligand are favoured at P4, P6 and P8.

Peptide structure analysis

It has long been known that all nine side-chains of the bound
peptides contact the HLA-A*0201 molecule and influence the
energetics of binding.39 The antigen-binding groove has a
30Å long surface accessible to a solvent probe. There are six
pockets in the surface denoted A F.43 Some of them are non-
polar and can form hydrophobic contacts, while others
contain polar atoms and can make hydrogen bonds with the
side-chains.

As statistical approaches, the additive method and CoMSIA
seek to correlate relative differences in discriminating

Figure 4 CoMFA StDev*Coeff maps contoured by actual values. Peptide FLYGALALA is shown inside the field. Upper left: steric map.
Green (level +0.01) and yellow (level –0.01) polyhedra indicate regions where more steric bulk or less steric bulk, respectively, will
enhance the affinity. Upper right: electrostatic map. Red (level +0.03) and blue (level –0.03) polyhedra indicate regions where negative
potential or positive potential, respectively, will enhance the affinity. Lower left: hydrophobic map. Yellow (level +0.01) and white (level
–0.01) polyhedra indicate regions where hydrophobic or hydrophilic groups, respectively, will enhance the affinity. Lower right: H-bond
abilities. Cyan (level +0.01) and magenta (level +0.01) polyhedra indicate regions where hydrogen bond acceptor or donor groups,
respectively, on the receptor will enhance the binding.
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molecular descriptor values to a dependent property (e.g. the
binding affinity). In that respect, CoMSIA is a method able to
map similarities or dissimilarities between molecules. The
additive method is able to quantify the contributions made to
the binding affinity by each amino acid, at each position, and
by the interactions between them. Comparing, in detail, the
results of the additive method and CoMSIA, we have found a
remarkable degree of congruence, and, where experimental
evidence is available to support our results, we have provided
them.

Hydrophobic steric bulk with negative potential is well
tolerated at P1. The most suitable amino acids for this
position seem to be Phe and Tyr. In our first CoMSIA study,
many areas of hydrogen-bond donor groups were found near
the N-terminus.13 These areas are absent in the present map
(Fig. 4, lower right). This is because there are no changes in
the hydrogen atom positions near the N-terminal due to the
automatic building of peptides. According to the additive
method, Tyr is the favourite amino acid for P1. Phe and Lys
also make positive contributions. Arg, His and Thr are not
preferred at P1. The remaining amino acids make negligibly
small contributions. Topologically, P1 corresponds to pocket
A.44 The surface of this pocket is predominantly polar: five
Tyr hydroxyl groups (Tyr7, Tyr59, Tyr99, Tyr159 and Tyr171),
a carboxyl group (Glu63), and an ε-amino group (Lys66).
Tyr7, Tyr59 and Tyr171 form a network of hydrogen bonds
that interact directly with the peptide N-terminus. Tyr159
hydrogen bonds to the carbonyl oxygen of the first peptide
amino acid residue (P1).45 Independently of our studies, it has
recently been reported that the substitution of Ile at P1 with
Phe or Tyr in the HIV reverse transcriptase (RT) peptide
(309–317) (ILKEPVHGV) increased threefold the cell
surface half-life of complexes.46,47 A π–π stacking interaction
between Trp167 and the aromatic P1 residues was proposed
to account for this change.46 Moreover, Tourdot et al. report
that the P1Y substitution in 10 non-immunogenic low-affinity
peptides exhibited a 2.3- to 55-fold higher binding affinity
and/or stabilized the HLA-A2.1 for at least 2 h more than the
corresponding native peptides.47

The steric map at P2 indicates that long side-chains such
as Leu, Ile and Met are well tolerated here (Fig. 4, upper left).
The additive method distinguishes two favourite amino acids
for this position (Met and Leu). The contribution of Met is
surprisingly higher than that of Leu. Ala, Cys, Gly and Thr
have negative contributions. The contributions of the other
amino acids are negligibly small. This is in good agreement
with many experimental data.6,48–50 The side-chain at P2 falls
into pocket B of the peptide-binding site on HLA-A*0201.
This pocket has a polar rim and hydrophobic inner walls
made up of Val67, Phe9 and Met45.44

Hydrophobic volume with negative potential is preferred
at P3. The side-chains of the amino acids at this position fall
into pocket D. Pocket D has been defined as a ‘loose’ pocket,43

and it belongs to the so-called secondary binding pockets. It is
a hydrophobic cavity located between the aromatic rings of
Tyr99 and Tyr159, also including residues 155, 156 and
160.51 This pocket prefers large hydrophobic residues like Phe
and Trp.52 The hydrogen-bonding ability map indicates that
amino acids able to form hydrogen bonds will also be well
accepted here. Tyr and Trp have the greatest positive contri-
butions for this position (Fig. 2), but Leu and Phe are also

well accepted. Glu is deleterious here for the affinity. Cys,
His, Pro and Ser contribute negatively.

Short hydrophilic amino acids able to form hydrogen
bonds are well tolerated at P4. Ser or Thr would be well
tolerated here. Kirksey et al. suggest the formation of a
hydrogen bond between Tyr at P1 and Glu at P4 bridged by a
water molecule.47 This should make the bound peptide more
rigid and easily recognized by T-cell receptors. The side-
chain at P4 is called ‘flag’ residue because it is solvent-
exposed in the complex with the MHC molecule;43 therefore,
it can contact the TCR. According to the additive method,
there is no favourite amino acid at P4. Ile and Phe are
deleterious, Cys and Met make significant negative contribu-
tions, and Gly, Pro, Ser and Thr are well accepted here.

The maps indicate that amino acids with hydrophobic,
branched or aromatic side-chains ending with small hydro-
philic groups are well tolerated at P5. Figure 2 shows that
favourite amino acids for P5 are Phe and Tyr. His, Leu and
Trp also contribute positively, while Arg should be avoided at
this position.

Amino acids with long hydrophobic side-chains are pre-
ferred at P6. Hydrogen-bond ability is an additional priority.
The bar chart for P6 shows that Ile, Leu, Thr and Tyr are well
accepted here. Ala, Arg, Asp, Gln, His and Lys contribute
negatively. This side-chain falls into pocket C.44 This pocket
is predominantly polar, made up of Thr73, His70, His74 and
Arg97. This explains the acceptance of the hydrophilic Thr
and Tyr, but it cannot explain the preference for the hydro-
phobic Ile and Leu.

Short side-chains are favoured sterically at P7. Pro is the
favourite amino acid for this position according to the addi-
tive method. His makes a good contribution as well. Asn is
deleterious here, Arg, Gln, Gly and Ser and Thr are not
preferred. The side-chain at P7 falls into pocket E. Two-thirds
of the surface area in this pocket is hydrophobic, but Arg97
provides a large polar patch on one side of the pocket.44

Pocket E can accommodate a variety of complementary
peptide side-chains, but an incompatible side-chain need not
prevent complex formation. This pocket has been called a
‘part-time’ pocket,43 and it belongs to the class of secondary
binding pockets.

The side-chain at P8 should be short, with a hydrophobic
core and an end capable of forming hydrogen bonds. No
favourite amino acids could be distinguished for this position
by the additive method, although Gln, Phe, Pro and Ser are
well accepted here. The presence of Asp, Ile, His, Met or Val
is not desired. Trp147 hydrogen bonds to the P8 carbonyl
oxygen.43 P8 is a ‘flag’ position as P4 is.

Amino acids with hydrophobic, short side-chains are
required for P9. Val is the favourite amino acid here judged
by the information in Fig. 2. The side-chain of Tyr116 occupies
the end of pocket F and is uncharged, so that the binding site
is complementary to small hydrophobic side-chains.39,44 Inter-
estingly, a small hydrophilic area carrying negative potential
appears near P9, which is due to the Thr introduced here by
the intermediate binder MLQDMAILT and the high binder
YMLDLQPET. However, according to the additive method,
Ser and Thr should be avoided. The Tyr116 side-chain hydro-
xyl group forms a hydrogen bond to Asp77 on the α1 helix,
stabilizing it in this orientation.43 Tyr84, Thr143, and positively
charged Lys146 bind to the carboxyl group of the C-terminal.43
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Peptides bound to the HLA-A*0201 molecule assume
extended but twisted conformations.39 As a result, the adja-
cent side-chains protrude in largely opposite directions and, in
practice, interactions between them are unlikely to exist. The
interaction between the adjacent side-chains may be consid-
ered as a change in the backbone conformation caused by a
certain amino acid at a certain position producing change in
the conformation of the adjacent amino acid side-chain.
However, the twisted conformation makes possible the inter-
actions between every second amino acid side-chain. These
interactions might have a steric, electrostatic, hydrophobic or
hydrogen-bonding character. A conformational change is also
possible here. Unfortunately, the additive method is unable to
give any explanation regarding the nature of forces involved
in such interactions, but it can assess quantitatively the
significance for the affinity.

Among the adjacent side-chain interactions, the favourite
ones are 1Y2L, 2L3M and 8L9A (Fig. 3a). The high contribu-
tions of the last two combinations are very unexpected as 3M,
8L and 9A are not among the favourite or highly positively
contributing amino acids. The only reasonable explanation is
a conformational change favouring the binding. The only
delirious combination is 2L3E; Glu is disfavoured at P3.

The combinations 1G3L, 2L4Q, 4S6G and 7F9V have the
highest contributions in binding affinity to HLA-A*0201
among the 1–3 side-chain interactions (Fig. 3b). 2L and 9V
are favourite amino acids, 3L and 4S make significant posi-
tive contributions, and 1G, 4Q, 6G and 7F make negligibly
small positive contributions. It is possible that conformational
changes and steric interactions are responsible, rather than
electrostatic, hydrophobic interactions, or intramolecular
hydrogen-bond formation. Extremely disfavoured combina-
tions are 1I3L, 2T4Q and 4I6V. The first of them seems
counterintuitive because both 1I and 3L make positive contri-
butions in the affinity. Furthermore, 3L in combination with
1G makes a positive contribution with a high value. Obvi-
ously, the steric bulk of 1I causes an inappropriate change in
the conformation of the 3L side-chain. The intolerance of
2T4Q and 4I6V is probably due to the high negative contribu-
tions of 2T and 4I.

Discussion

We have described the development of quantitative approaches
to the prediction of MHC binding built on our database of
quantitative binding measures. Despite the principal differ-
ences between the additive method and CoMSIA, very good
agreement was found between the results generated by both
techniques. The combination of these two methods gives very
useful results. CoMSIA can extrapolate, that is, predict the
binding affinity of a peptide with an amino acid not presented
in the initial training set, but it cannot assess the contribution
of each amino acid at each position and the interactions
between them. The opposite is true for the additive method: it
can not extrapolate, but it can give a quantitative assessment
of individual amino acid contributions at any position in the
peptide. The two methods have been applied to sets of
nonamers binding to the MHC class I molecule HLA-A*0201.
An expansion to apply these to other alleles is in progress.

In developing these methods, we have encountered prob-
lems that are only rarely associated with QSAR analyses of

small molecules. These include the size of the peptide mole-
cules being studied; the sheer number of molecules being
investigated, perhaps 10-fold greater than a small molecule
study; and the great diversity of physicochemical properties
associated with each position being examined. We have
avoided issues of molecular alignment by assuming a con-
stant backbone structure. It is clear from X-ray analyses that
there are only small differences in backbone conformation for
nonamer peptides.44,45,51 Given the number of peptides under
study, allowances for conformational flexibility in the back-
bone is not tractable. As 92.5% (CoMSIA model) of the
peptides are either well- or very well-predicted, variations in
the binding conformation do not seem significant. Poorly
predicted peptides might exhibit properties significantly dif-
ferent from those in our training set. This is certainly true for
peptides PLLPIFFCL and VCMTVDSLV. However, it
should be noted that according to QSAR convention, predic-
tions within 1.0 log unit are considered acceptable.36,53–55 This
would result in mean residuals of approximately 0.5 log units.
The mean absolute values for the residuals for the additive
method and CoMSIA are 0.573 and 0.489, respectively.

In conclusion, the proposed methods for binding affinity
prediction (additive and CoMSIA) have many advantages in
comparison with other methods. The combination of the two
methods leads to very reliable results. They are complemen-
tary because they are based on totally different approaches,
yet give similar results. Finally, a set of high-affinity peptides
can be designed or optimized using these methods. Our initial
experimental work gives promising results in this regard.
Internet access to these methods is forthcoming.

As part of its ambitious programme, the Edward Jenner
Institute for Vaccine Research is committed to the rapid devel-
opment of computational vaccinology as a vital component in
the fight against global disease. We would expect computa-
tional vaccinology to have a similar effect on the search for
new vaccines as molecular modelling and other informatics
strategies have had on the discovery of novel drugs.
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