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JenPep is a relational database containing a compendium of thermodynamic binding data for the interaction
of peptides with a range of important immunological molecules: the major histocompatibility complex,
TAP transporter, and T cell receptor. The database also includes annotated lists of B cell and T cell epitopes.
Version 2.0 of the database is implemented in a bespoke postgreSQL database system and is fully searchable
online via a perl/HTML interface (URL: http://www.jenner.ac.uk/JenPep).

INTRODUCTION

From the perspective of human disease, a proper under-
standing of the immune system is vital. Indeed, the immune
system has evolved to combat the threat posed by pathogen
mediated infection as well as playing an equally pivotal role
in other human pathologies, such as allergy, autoimmunity,
and cancer. We can do battle with the menace of disease by
challenging our immune systems in an appropriate way: this
is the concept that underlies the action of vaccines. One of
the principal goals of Immunoinformatics,1 the application
of molecular informatic techniques to the immune system,
is to develop computational vaccinology, or computer aided
vaccine design (CAVD), and apply it in the search for new
vaccines. At the heart of computational vaccinology lies the
problem of characterizing and predicting the immunogenicity
of proteins, as mediated through antigenic determinants or
epitopes.

Epitope, at least as it is understood within the im-
munological and general bioscience literature, is a broad and
ill-defined term. Put at its most simplistic, an epitope is any
molecular structure that can be recognized by the immune
system. Epitopes can be protein, carbohydrate, lipid, or
nucleotide. It is through recognition of foreign, or nonself,
epitopes that the immune system can identify and, hopefully,
destroy pathogens. Hitherto, peptide epitopes have been the
best studied and have, traditionally, been categorized as either
T cell or B cell epitopes. T cell epitopes are peptides
presented to the cellular arm of the immune system. A
conformational B cell epitope is composed of one, or more,
regions of whole, folded proteins recognized by soluble or
membrane bound antibody molecules. Linear B cell epitopes
are short peptides that are cross-reactive with conformational
epitopes. Putting aside issues such as delivery mechanism
or the choice of adjuvants, broadly speaking, vaccines can
be grouped together as attenuated pathogens (whole micro-
organisms which have lost virulence but retained immuno-
genicity), subunit vaccines (whole protein immunogens), or
polyepitope (one or more antigenic epitopes linked together).
Historically, attenuated vaccines have been the most suc-

cessful, but modern immunovaccinology is increasingly
turning its attention toward epitope vaccines, which can be
designed rationally and offer potential improvements in
specificity and safety.2

We have developed the JenPep database as an aid to
rational vaccine design. Here we outline the continuing
development of this system. JenPep is a quantitative database
characterizing the thermodynamics of peptide binding as well
as focusing on the amino acid identity of epitopes. Experi-
mental studies indicate that only peptides that bind with high
affinity to MHC molecules are recognized as T cell epitopes,3

with weaker or nonbinding peptides seldom being recog-
nized. It would be foolish to ignore the beneficial insights
that molecular and physicochemical analysis may give into
immunological mechanisms. A significant key to this would
be the ability to access a database of immunologically
relevant quantitative thermodynamic and kinetic binding data.
From such a database, one could, for example, build
statistically accurate models for predicting MHC-peptide
binding as well as modeling other immunological molecular
recognition events. As no such compilation is currently
available, we have previously constructed and have now
greatly expanded such a database.4 In this paper we describe
version 2.0 of JenPep.

Immunological databases are not, however, without pre-
cedent. Several concentrating on the exhaustive, in-depth
sequence analysis of particular types of important im-
munological biomacromolecule have existed for some time.5

A few other databases focus on themes similar to our own.
Arguably, the closest is the now defunct MHCPEP database
developed by Brusic.6 This combines both T cell epitope
and MHC binding data. MHCPEP employs a widely used
conceptual simplification, operating as a de facto data fusion
device, which combines sets of distinct binding measures.
It classifies peptides as High, Medium, Low, or Nonbinders,
using the following schema: Nonbinders> 10 µM, 10 µM
> Low Binders> 100 nM, 100 nM> Medium Binders>
1 nM, High Binders < 1 nM. Although such broad
classifications may take account of experimental inaccuracy,
they are intrinsically subjective. Subsequently, Brusic and
co-workers have developed FIMM.7 This is a much more
complex and sophisticated database, but retains the same
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subjective classification of binding. MHCBN8 is a database
system similar in concept to MHCPEP and FIMM, again
focusing primarily on T cell statistics. It does include some
quantitative data, although this is primarily parenthetical, it
being present as comments rather than as explicitly search-
able data. The SYFPEITHI database is an up-to-date and
useful compendium of T cell epitopes and MHC peptide
ligands.9 The HIV Molecular Immunology database10 is a
high quality database with a scope, at least in terms of data
archived, broader than others, containing lists of MHC
binding motifs and ligands as well as B and T cell epitopes.
Albeit, in the limited, if very extremely important, context
of a single viral species. However, SYFPEITHI and the HIV
Molecular Immunology database have no quantitative di-
mension to their classification of MHC binding: it lists only
peptides that bind without record of measured binding
affinity. One should note that many of the systems described
above are available via the World Wide Web (see Table 1).

As a preliminary to further, and more complete, discussion
of JenPep, we present a concise primer to mechanisms
involved in the presentation and recognition of antigen within
the immune system. We will follow this exordium with an
exploration of the computational and conceptual structure
of JenPep and then discuss the next steps in the continuing
development of the database. Our emphasis in this paper is
on the data content, that is the underlying chemical biology,
rather than a lengthy discussion of the database structure
orientated toward computer scientists. In so doing we seek
to make our paper relevant and accessible to chemists,
biologists, and immunologists rather than computer scientists.

JENPEP IN CONTEXT: A BRIEF PRIMER ON ANTIGEN
PRESENTATION AND RECOGNITION

At the heart of our attempts to design vaccines rationally
is the need for a fundamental understanding of immunobio-
logical mechanisms. The manifestation of immunology at
the level of the whole animal is, however, an exceedingly
complex and hierarchical phenomenon, exhibiting much
emergent behavior. Historically, and operationally, the im-
mune system has been thought to divide into two distinct
responses, one mediated by cellsscellular immunitysand
one by soluble factors, the so-called humoral immunity.

We shall begin by focusing on that aspect of the adaptive
immune response that is mediated by cells. A specialized
type of immune cell mediates cellular immunity: the T cell,
which patrols the body searching out proteins that have a
viral, bacterial, fungal, or parasite origin. The cell surface
membrane of T cells is enriched in the T cell receptor (TCR),

which functions by binding to major histocompatibility
complex proteins (MHCs) expressed on the surfaces of other
cells. These proteins, in turn, bind small peptide fragments
derived from both host and pathogen proteins. It is the
recognition of such complexes that lies at the heart of the
cellular immune response. Immunologists refer to short
peptides such as these as epitopes. The overall process
leading to the presentation of antigen-derived epitopes on
the surface of cells is a long, complicated, and not yet fully
understood story. MHCs fall into two structurally distinct
groups, each associated with a distinct presentation process,
Class I and Class II. Class I MHCs are expressed by almost
all cells in the body. They are recognized by T cells whose
surfaces are enriched in CD8 coreceptor protein, so-called
CD8+ T cells. Class II MHCs are only expressed on a special
subset of cellssprofessional antigen presenting cells (APCs)s
and are recognized by CD4+ T cells. The two classes of
MHC molecule are distinct, presenting antigen from different
sources. Class I molecules present endogenously synthesized
or intracellular protein and class II presents exogenously
derived or extracellular proteins. The cell biology and
expression of each type of MHC is tailored to address these
different functions.

Class I presentation is characterized by a variety of
degenerate pathways, but we will consider here only the most
important and, consequently, the best understood.11,12 See
Figure 1. Class I peptides are primarily derived from viral
and other cytosolic proteins, including host, or self, proteins.
Ubiquitinylation targets these proteins to the proteasome,
which cleaves them proteolytically into short peptides of 8
to 18 amino acids in length.13 These peptides are then bound
by TAP (Transporter associated with antigen presentation),
a transmembrane ATP-binding cassette transporter, which

Table 1. Publically Accessible Functional Immunology Databasesa

database URL reference

FIMM sdmc.krdl.org.sg:8080/fimm/ 7
SYFPEITHI syfpeithi.bmi-heidelberg.com 9
JENPEP www.jenner.ac.uk/JenPep 4
MHCBN www.imtech.res.in/raghava/mhcbn/ 8
MHCPEP wehih.wehi.edu.au/mhcpep/ 6
HIV Database hiv-web.lanl.gov/content/immunology/ 10

index.html/index.html

a A set of immunology databases focusing on peptide orientated
functional data. Each database is available free via the Internet from
the indicated URL. The reference shown is to the citation given in the
main text.

Figure 1. Principal Class I presentation pathway. Class I peptides
are primarily derived from viral and other cytosolic proteins,
including host, or self, proteins. Ubiquitinylation targets these
proteins to the proteasome, which cleaves them proteolytically into
short peptides of 8 to 18 amino acids in length. These peptides are
then bound by TAP (transporter associated with antigen presenta-
tion), which translocates them from the cytoplasm to the endoplas-
mic reticulum (ER). In the ER, peptides are bound by MHCs, which
then passed through the golgi and traffic to the cell surface via
exocytic vacuoles. Cell surface MHCs are recognized by TCRs on
CD8+ T cells, evoking a subsequent activation of the T cell.
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translocates them from the cytoplasm to the endoplasmic
reticulum (ER), where they are bound by MHCs.14 See Figure
2. It is now increasingly clear however that several other
processing routes, including TAP-independent Trojan antigen
presentation,15 act to complicate this simple picture. For
example, ERAAP (ER associated aminopeptidase associated
with antigen processing), a member of the family of zinc
metalloproteases, has been shown to trim peptides cleaved
by the proteosome within the ER,16 as has various other
proteases, such as furin.17 Thus, ultimately the accurate
prediction of class I processing will need to rely on a much
more comprehensive and integrated modeling of the entire
multistep process rather than on individual models of one
or more subsidiary stages.

For Class II, receptor mediated internalization of extra-
cellular protein derived from a pathogen is targeted to an
acidic endosomal compartment, where proteins are cleaved
by cathepsins, a particular variety of protease, to produce
longer peptides of 15-20 amino acids. See Figure 3. Unlike
Class I MHCs (whose binding sites are closed at both ends
and therefore bind a repertoire of peptides restricted in
length), Class II MHCs binding sites are open at both ends,
and they are thus also able to bind longer peptides.

Peptide bound MHCs (or peptide-MHC (pMHC) com-
plexes) are recognized by receptors on the surface of T cells,
so-called TCRs. Many other coreceptors and accessory
molecules, in addition to CD4 and CD8 molecules, are also
involved in T cell recognition. The recognition process is
by no means simple and remains poorly understood. None-
theless, it has emerged that the process involves the formation
of the so-called immunological synapse,18 a highly organized,

spatio-temporal arrangement of receptors and accessory
molecules of many types.

T cells that can kill other cells are called cytotoxic T
lymphocytes or CTL. Most CTL are MHC class I-restricted
CD8+ T cells, but CD4+ T cells can also kill cells under
certain conditions. So-called helper CD4+ T cells assist B
cells to make antibody in response to antigenic challenge
and exist as a set of subtypes. TH1 cells are a subset of T
cells that are characterized by their cytokine expression
profile and are mainly involved in activating macrophages.
Another subset of helper T cells is the TH3 cells, which
produce transforming growth factor-beta in response to
antigen. The most efficient subset of helper T cells is,
however, TH2 cells. They produce cytokines, primarily
interleukins 4 and 5, which stimulate B cells to produce
antibody.

As we have said, pMHCs are recognized by TCRs on the
surface of T cells. In order for this to occur, the antigen must
have two distinct interaction sites: one, the epitope, interacts
with the TCR, and the other, called the agretope, must
interact with an MHC molecule. The formation of such
ternary complexes is the molecular recognition event at the
heart of the adaptive and memory cellular immune responses.
MHCs exhibit extreme polymorphism. Within the human
population there are, at each genetic locus, a great number
of genetic variantsscurrently in excess of 1200sknown as
allelic products or alleles, many represented at high frequency
(>1%).19 MHC alleles may differ by as many as 30 amino
acid substitutions. Such a remarkable degree of polymor-
phism implies a selective pressure to establish and maintain
it. Different polymorphic MHC alleles, of both Class I and

Figure 2. Peptide translocation by TAP. Peptides produced by the proteasome are bound by TAP (transporter associated with antigen
presentation), a heterodimer of TAP1 and TAP2, a member of the transmembrane ATP-binding cassette transporters. This protein pump
then translocates the peptides to the endoplasmic reticulum (ER) where they are bound by MHCs. Assembly of the MHC-peptide complex
is facilitated by a set of chaperones. Free MHC proteins are initially bound by calnexin, which exchanges with other proteins, includingâ2
microglobulin, to form a supramolecular complex of MHC, ERp57, and calreticulin. This complex then associates, together with tapasin,
to the TAP dimer, prior to nucleotide-driven unidirectional peptide transport.
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Class II, have different peptide specificities: that is to say
that they bind peptides with particular sequence patterns. This
has led to the development of so-called motifs. Each peptide
motif is characterized by the position and occupancy of
anchor residues whose side chains protrude into complimen-
tary pockets within the peptide binding groove on the
respective MHC molecule.20 Polymorphic MHC residues
cluster in these pockets and in other secondary pockets which
are also important in determining binding specificity. A more
accurate description of the phenomenon of specificity, which
escapes the limitation of the peptide motif so-beloved of
immunologists, is to say that MHCs bind peptides with an
affinity dependent on the nature of the bound peptide’s
sequence.

Within a population there are an enormous range of
different, variant genes coding for MHC proteins. In man
and mouse, as in most species, each MHC class is represented
by more than one locus. The class I loci are HLA-A, HLA-
B, and HLA-C and the class II loci HLA-DR, HLA-DQ,
and HLA-DP. All MHC loci are codominant: both mater-
nally and paternally inherited sets of alleles are expressed.
The set of linked MHC alleles found on the same chromo-
some is known as a haplotype. T cell receptors, in their turn,
also exhibit different affinities for pMHC. The combination
of MHC and TCR selectivities thus determines the power
of peptide recognition in the immune system and thus the
recognition of foreign proteins and pathogens.

The accurate prediction of T cell epitopes remains
problematic, and because of this, recent theoretical work has
largely focused on the prediction of peptide binding to MHC
molecules.21 The prediction of MHC binding is probably both
the best understood and the most discriminating step in the
presentation-recognition pathway within cellular immunity.
The stability, and thus longevity, of MHC-peptide complexes

is of general interest because of its fundamental role in the
regulation of T cell activation.

Turning now to the humoral response, antibodies are
immunological globular proteins secreted by B lymphocyte
cells. They are found on serum, lymph, and mucosal surfaces
and are a key component in the adaptive immune response
of higher vertebrates. B cell-antigen binding occurs via a B
cell receptor (BCR)-epitope complex. When accompanied
by an appropriate helper T cell response it results in B cell
differentiation into an antibody secreting plasma cell. This
ultimately results in a B cell-mediated immune response
against the pathogen. For B cells the antigen receptor is a
cell surface antibody rather than a TCR. Each B cell
expresses a single type of BCR. Antibodies can mediate
protection from pathogens in several ways. Possibly the most
direct route involves forming a high affinity interaction with
a pathogen or its products, thus preventing their access to
cells. This is called neutralization and is particularly impor-
tant in protecting against viruses or soluble bacterial toxins.
Other important antibody mediated processes include op-
sonization (the coating of pathogenic cells leading to
enhanced recognition and ingestion by phagocytes) and the
activation of complement.

In an analogous manner to T cell mediated immunity, the
ability to identify linear and conformational B cell epitopes
on proteins is of fundamental importance in the development
of synthetic peptide vaccines. A B cell epitope (also known
as an antigenic site or determinant) may be formed from
RNA, DNA, protein, polysaccharides, or glycoproteins.
Epitopes recognized in an in vivo immune response must
be accessible to antibody binding. An antibody raised against
a pathogen tends to bind to epitopes located on the protein
surface. However, it is now generally accepted, at least
conceptually, that the entire surface of a pathogen acts

Figure 3. Class II presentation pathway. Receptor mediated internalization of pathogen derived extracellular protein is targeted to an
acidic endosomal compartment, where they are cleaved by cathepsins, a particular kind of protease, to produce peptides of 15-20 residues.
In the ER, newly synthesized class II MHCs bind a polypeptide called invariant chain or Ii. This serves a dual purpose, first by blocking
peptide binding to class II molecules and also by targeting the MHC to a specialized endosomal compartment (MIIC). Membrane vesicle
bound external antigen enters the cell by either receptor-mediated endocytosis or fluid phase pinocytosis and is targeted to the MIIC. Here
both antigen and li are degraded, the former generating large numbers of antigenic peptides, which are then bound by the MHC prior to
trafficking to the cell surface.
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as one all-encompassing antigenic site. Virtually any part
of a globular protein is capable of stimulating the production
of particular antibodies under appropriate conditions.

However, the frequency of protein-antibody recognition
is not uniform across its surface. Regions that bind a greater
proportion of antibodies than other surface areas during a
normal in vivo immune response are termed major antigenic
sites. These sites may be considered immunodominant, since
antibody-producing B-cell clones specific for these sites are
stimulated to proliferate more readily. Globular proteins may
possess more than one immunodominant site, up to two to
three. Predicting the amino acid sequence of protein regions
most likely to be recognized by antibodies would enable
corresponding peptides to be synthesized facilitating antibody
recognition of the naı¨ve epitope.

DATABASE IMPLEMENTATION

Because of its modest size, Version 1.0 of JenPep was
constructed using MicroSoft ACCESS as the database engine
and could be searched via a graphical user interface (GUI)
built using the Active Server Pages protocol (ASP). The
growth in the size and scope of the database has required
that version 2.0 of JenPep be implemented in a bespoke
system using open source postgreSQL22 as the database
engine and a GUI written in perl/HTML. Within postgreSQL,
a series of tables was created to accommodate the stored
data. The B cell Epitope data are stored in three separate
tables (ab_detail, ab_notes, ab_papers), related by the id
number, which serves as the primary key. The T Cell
Epitope, MHC Ligand, and TAP Ligand data are stored in a
larger, generic table: tc_detail. Finally, the TCR-MHC
protein complex data are stored in a separate table: mhcc-
mplx_detail. The structure of these tables is shown in Table
2. The GUI is less restrictive than in version 1.0, including
a sequence search that allows substring searches and the use
of wild card characters.

Data collation has continued to involve exhaustive, semi-
manual searching of the primary literature. In the develop-
ment of version 2.0 we have incorporated data from new
papers as they are published. Moreover, we have supple-
mented this by continued searching of available databases
containing immunological literature. This has involved the
use of author name and keyword searches, prospective
searching of cited papers, and citation matching of authors
from papers describing novel assay development. The range
of information incorporated into JenPep has been expanded
to include new data types, such as pMHC-TCR interactions
and B cell epitopes, and we have also addressed the issue of
extracting data presented in a graphical form using the utility
Ungraph,23 a tool for converting images of graphs into
numerical values. We have used this to extract binding
measures from bar charts and other nontabulated graphs.

It remains the case however that we cannot be certain how
much data remain to be collated. A considerable amount of
useful data are still locked into the hardcopy literature, and
it is an ongoing challenge to find and extract these data into
a machine-readable format. A significant proportion of
quantitative binding data remains unpublished or as confer-
ence posters or in laboratory notebooks. We can look forward
to the day when immunologists submit their experimental
binding data to an online archive much as today those

involved in genomic sequencing are obliged to submit their
data to GenBank or other online archive. In the meantime,
we have added a deposition form to our interface allowing
experimentalists to add data directly into JenPep. We should
like to extend an invitation to all experimental immunologists
to begin this process, submitting their raw binding data, either
before or after publication, to us for incorporation into
JenPep.

DATABASE CONTENT

Version 1.0 of JenPep was composed of three compen-
dia: compilations of T cell epitopes and quantitative
measures of peptide binding to TAP and to Class I and Class
II MHCs. Version 2.0 has expanded this to include pMHC-
TCR interactions and linear B cell epitopes. The database is
organized on the basis of peptides defined by their sequence
and length. The number and size range of peptides in each
of these five categories are listed in Table 3.

The content of the database is either extracted directly from
the literature or is generated by searching, or by making
reference to, other online data repositories. A considerable

Table 2. Internal Structure of the JenPep Databasea

Data Category: The B Cell Epitope

ab_detail ab_notes ab_papers

id id id
location note author_ref
weau_loc url
mab author
neutralizing journal
epitope title
immunogen volume
species_iso pages
donar year

booktitle
publisher
address
abstract

Data Categories: T Cell Epitope, MHC Ligand, and TAP Ligand

tc_detail tc_detail tc_detail

entry swiss_db_ref c50s
peptide_cat sp_hyperlink tm
epitope nonbinder ka
seq_length ungraphed kd
allele ic50 ric
subtype ic50f ec50
mhc_class bl50 comments
mhc_species thalf journal_ref
pep_desc sc50 pub_med
category

Data Category: TCR-MHC Protein Complexes

mhccmplx_detail mhccmplx_detail mhccmplx_detail

ENTRY_NO MHC_DERIVED K_on
PEP_CAT PEP_DESC K_off
EPITOPE CATEGORY KA
SEQ_LENGTH SWISS_DB_REF THALF
ALLELE SP_HYPERLINK TEMP
SUBTYPE DISSOC_CONS COMMENTS
MHC_CLASS AFFINITY REFERENCE
TCR_REL_INFO KD PUBMED
STRUC_SUM EC50

a The names of tables used within the five subdatabases within
JenPep: T cell epitope, MHC binding, TAP binding, pMHC-TCR
database, and B cell epitope. The columns within the separate sections
are also given.

1280 J. Chem. Inf. Comput. Sci., Vol. 43, No. 4, 2003 MCSPARRON ET AL.



quantity of the information we have collated in JenPep is,
essentially, generic data: it is the same irrespective of data
category. For each entry, for example, we record the peptide
sequence (e.g.YLDDPDLKY) of the epitope using the
standard one-letter code, its length (9 in this case), and,
through a link to the sequence database SWISS-PROT, the
antigen to which the peptide sequence most closely matches
(in the case ofYLDDPDLKY- DNA (cytosine-5)-methyl-
transferase 1, SWISS-PROT code P26358). The description
of the antigen from which the peptide is derived is, wherever
possible, obtained directly from the literature. There are
occasions, for example, when the peptide is synthetic, when
this information cannot be provided. Sequence searching is
used to identify an appropriate database link. The principal
drawback here is that, due to their short length, the same
peptide sequences can be found in a number of different
potential antigenssorthologues, paralogues, or even in
completely unrelated proteins. This is not a significant
problem for MHC binding but does pose a dilemma for
epitopes. Binders are essentially independent of sequence
context: a peptide either binds or its does not. Epitopes are,
however, processed from whole proteins via a complex
processing pathway, as described in earlier sections. It is
possible to use the sequence context of a particular epitope
to deduce preferred cleavage patterns of the proteasome or
endoplasmic protease, but only if this context is correctly
defined. Likewise, wrongly identifying particular proteins
as antigens can lead to the percolation of annotation errors,
assuming that JenPep is used subsequently to assign the
antigenic status of proteins. As JenPep is not currently used
for either purpose, this is not an issue of current concern,
but we will have to remain aware of this possibility.

We have also implemented a classification scheme,
categorizing peptides into simple class (self-peptides, viral,
bacterial, cancer, etc.) related to the purpose of the original
experiment or the origin of the antigen. JenPep also links to
the PUBMED citation of the paper from which the recorded
data were derived (for YLDDPDLKY:J. Immunol. 1994,
152, 3913-3924, PUBMED ID 8144960). For the T cell
epitope, MHC ligand, and TCR-pMHC complex categories,
we also record, for each peptide, the MHC restriction in terms
of the host species, class (class I vs class II), and allele. For
YLDDPDLKY, these data would behuman, class I, and
HLA-A*0101. As far as the variable ways of naming alleles
inherent in the primary literature permit us, we present MHC
nomenclature standardized to the best of our ability. The
primary resource for HLA nomenclature is the HLA Infor-
matics Group [http://www.anthonynolan.org.uk/HIG/]. The
naming of an allele follows a defined pattern:19 for HLA-
A*0101, the HLA-A refers to the HLA locus, the initial 01
to the group of alleles which encode the serologically

recognized A1 antigen, and the final 01 to the individual
HLA allele protein sequence. The nomenclature has recently
been extended to include null sequences, synonymous
mutations, and mutations outside the coding region. In
JenPep we store the antigen classification (i.e. HLA-A1) and,
where available, the specific allele. Data on null sequences
and synonymous mutations do not affect peptide binding and
we omit them. We often encounter problems with nonstand-
ardization in the reporting of alleles. While a four-digit HLA
name implies the two-digit antigen type, a two-digit clas-
sification clearly does not imply a specific allele. Other rich
sources of information regarding HLA nomenclature are
available at the IMGT [http://imgt.cines.fr; http://www.
ebi.ac.uk/imgt/index.html] and at WMDA [http://www.
worldmarrow.org/ dic99tab.html]. JenPep contains data on
a wide variety of MHC alleles: for MHC class I, JenPep
contains data for over 70 class I alleles and for over 40 class
II alleles.

Compared with version 1.0, JenPep now incorporates more
forms of binding measurement. These include equilibrium
constants, which cover true association (KA) and dissociation
constants (KD), as well as radiolabeled and fluorescent IC50

values that approximate equilibrium binding constants under
suitable conditions. Other types of measurement include BL50

values, together with closely related SC50, EC50, and C50

values, as calculated in a peptide binding stabilization assay,24

and Tm values (the temperature at which 50% of MHC
protein is denatured). We also recordâ2-microglobulin
dissociation half-life,25 which is strictly a kinetic measure-
ment, but one believed, at least by immunologists, to correlate
well with binding affinity.

These different measures form a hierarchy, with equilib-
rium constants, when calculated correctly, being the most
reliable and accurate. Peptide binding to MHC molecules
can be quantified as one would quantify any other biomo-
lecular receptor-ligand interaction

where R is the receptor, L the ligand, and RL the receptor-
ligand complex. Such interactions frequently obey the law
of mass action, which states that the rate of reaction is
proportional to the concentration of reactants. The rate of
the forward reaction is proportional to [L][R]. The rate of
the reverse reaction is proportional to [RL], since there is
no other species involved in the dissociation. At equilibrium,
the rate of the forward reaction is equal to the rate of the
reverse reactions, and so (usingk1 andk-1 as the respective
proportionality constants)

Rearranging

Table 3. Summary of the Characteristics of Epitope Data Contained with JenPepc

peptide class
total no.

of peptides
lengtha

distribution class ib
lengtha

distribution class iib
lengtha

distribution

Tap transporter 441 7-15
MHC binding 12336 4-28 6411 4-23 5925 7-28
TCR-pMHC 49 8-20
T cell epitope 3218 7-35 2060 7-24 1158 8-35
B cell epitope 816 3-47

a Range in amino acids.b Number of peptides.c The number and class and length distributions for the five classes of epitode and binding data
contained within JenPep.

R + L T RL

k1[R][L] ) k-1[RL]
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whereKD is the equilibrium dissociation constant, which also
represents the concentration of ligand which occupies 50%
of the receptor population at equilibrium. Experimentally,
the measurement of equilibrium dissociation constants has
most often been addressed using radioligand binding assays.
There are many other ways to determine equilibrium
constants more exactly (BIAcore technology26 and Isothermal
titration calorimetry27 are two well-known examples) yet
most have not been applied to the study of MHC peptide
interactions. Saturation analysis measures equilibrium binding
at various radioligand concentrations to determine receptor
number (usually denotedBmax) and affinity (KD). Competitive
binding experiments measure binding at single concentration
of labeled ligand in the presence of various concentrations
of unlabeled ligand. Competition experiments can be either
homologous (where the labeled and unlabeled peptides are
the same) or, more commonly, heterologous (where labeled
and unlabeled peptides are different) inhibition assays.
Homologous inhibition experiments perform a similar func-
tion to saturation analysis.

IC50 values, obtained from a competitive radioligand or
fluorescence binding assay,28 are the most frequently reported
affinity measures. The value given is the concentration
required for 50% inhibition of a standard labeled peptide by
the test peptide. Therefore nominal binding affinity is
inversely proportional to the IC50 value. Values obtained from
radioligand or fluorescence methods may be significantly
different. IC50 values for a peptide may vary between
experiments depending on the intrinsic affinity and concen-
tration of the standard radiolabeled reference peptide as well
as the intrinsic affinity of the test peptide.

The KD of the test peptide can be obtained from the IC50

value using the relationship derived by Cheng and Prussoff29

whereKD
i is the dissociation constant for the inhibitor or

test peptide,KD
S is the dissociation constant for the stan-

dard radiolabeled peptide, and [Ltot
s] is the total concentration

of the radiolabel. This relation holds at the midpoint of the
inhibition curve under two principal constraints: the total
amount of radiolabel is much greater than the concentration
of bound radiolabel and that the concentration of bound test
peptide is much less than the IC50. This relation, although
an approximation, holds well under typical assay conditions.

For competition assays, it can be shown that IC50 values
are defined by

where [RLi] is the concentration of test peptide bound to
MHC and Rfree is the concentration of free MHC. Both [Rfree]
and [RLi] are independent of the test IC50 value. It is clear,
then, that the measured IC50 value varies with the equilibrium
dissociation constant, at least within a single experiment. In

practice, the variation in IC50 is often sufficiently small that
values can be compared between experiments. For the
peptide discussed above, YLDDPDLKY, the radiolabeled
IC50 value recorded in JenPep is 2.8 nM. RIC-1, which are
calculated in a relative binding assay, is the amount of the
test peptide required to inhibit 50% of a radiolabeled
reference peptide’s binding. The value is then normalized
to the concentration of unlabeled reference peptide required
to achieve 50% of the labeled reference peptide’s binding.
Data on peptide binding to TAP, currently the smallest of
our compendia, are limited to radiolabeled IC50 data. As yet,
TAP binding has not been studied as deeply as other areas
of quantitative immunology.

BL50 values are also obtained from a peptide binding
assay.24 They are the half-maximal binding levels calculated
from mean fluorescence intensities (M.F.I.) of MHC expres-
sion by RMA-S or T2 cells. Cells are incubated with the
test peptide and then labeled with a fluorescent monoclonal
antibody. The nominal binding strength is again inversely
proportional to the BL50 value. These assays are often termed
stabilization assays, as it is presumed that cell surface MHCs
are only stable when they have bound peptide. Given that
peptides are typically administered extracellularly, there
remain questions about the mechanism of peptide induced
MHC stabilization. Moreover, the measured BL50 values also
represent an approximate overall value from a complex
multicomponent equilibrium. The interaction between peptide
and MHC, as reflected in complex stability, is measured by
binding to it either an allele- or class I-specific antibody,
which is then bound by a flourescently labeled antibody
specific for the first antibody. The resulting complex is then
assayed spectrophotometrically using FACS or an equivalent
technique. Affinity measures very similar to BL50s, known
by various similar names such as SC50, C50s, etc., are also
found in the literature. SC50 is the binding affinity calculated
from a stabilization assay. It is the 50% maximal stabilization
concentration inducing half of the maximal up regulating
effect. The binding strength is inversely proportional to the
SC50 value. C50 is, similarly, the molar concentration of the
peptide at 50% of the maximum fluorescence obtained with
that peptide. EC50 expresses relative binding. When multiple
peptides are compared the C50 values of a reference peptide
is obtained. Binding of the other peptides is expressed as
EC50, which is the molar concentration of a given peptide
required to obtain the fluorescence value at the C50 of the
reference peptide.

The half-life for radioisotope labeledâ2-microglobulin
dissociation from an MHC class I complex, as measured at
37°C, is a commonly reported alternative binding measure.25

This is a kinetic measurement rather than a thermodynamic
one, although it is often assumed that the greater the half-
life the stronger the peptide-MHC complex. The half-life
(t1/2) equals

Here thet1/2 corresponds to the dissociation of the MHC-â2

microglobulin complex rather than the kinetics of the
protein-ligand interaction. One would anticipate that the
peptide dissociation would be related to the overall dissocia-
tion of the complex, but quite what this relationship is has
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not been characterized.
Tm is the temperature at which 50% of the MHC protein

is denatured as measured by circular dichroism.30 Jenpep also
records so-called Weak/Nonbinder as a category. This
indicates that the peptide has been tested in an MHC
restriction assay and has been found to exhibit a binding
affinity so low that it can be categorized as inactive. The
database also records whether a recorded value has been
obtained using Ungraph.23 In JenPep, Ungraph is used to
extract binding values from graphs where exact numerical
values are not given. Numerical data gathered using this
method are operationally derived approximations to the
experimentally verifiable measured values but still retain a
sufficiently high degree of accuracy to be worth recording.

We may wish to ask the question: which of these measures
is best? Unfortunately, there is no simple answer. The prima
facie response might be “equilibrium constant” but in what
context?KD and IC50 values are probably the most accurately
measured constants, as they are usually assayed using soluble
protein. However, as MHCs are membrane bound in their
functional context, a value, such as a BL50, might be more
relevant to processes in vivo. However, BL50 values are
typically measured using a cascade of antibodies and the
multiple equilibrium that results may obscure salient experi-
mental details. Many other measures, different to those
adumbrated above, have also been reported in the context
of MHC-peptide interaction. For example, Mean Fluores-
cence Intensities, or MFIs, typically measured at a single
peptide concentration, are widely reported. However, as yet,
no clear consensus has emerged on the most appropriate type
of affinity measurement or assay strategy. A step forward
will come when we are able to deploy methods that return
richer affinity measurements. ITC is an example, returning
not only highly accurate dissociation constants but also
corresponding entropy, enthalpy, and heat capacity values.
However, routine ITC again only operates on soluble
molecules and is very time-consuming, labor intensive, and
relatively expensive to perform. No method readily addresses
the joint goals of effectively mimicking the in vivo,
membrane bound nature of the interaction and the need for
accuracy. It is a prime concern to establish a correlation
between these different binding measures, so that informa-
tion-rich measures can work synergistically with those that
are facile to perform. Moreover, it reinforces the need to
establish effective predictive methodology that can substitute
for experimental assays.

Once a peptide has bound to a MHC, then in order for it
to be “recognized” by the immune system, the pMHC
complex has to be “recognized”, at the molecular level, by
one of the TCRs of the T cell repertoire. As part of our
database expansion, we have added data on the thermody-
namic stability of the ternary complex of TCR, MHC, and
peptide, as expressed as the affinity of the TCR for the
peptide-MHC complex. We have gathered together infor-
mation related to this process including data on affinities
(essentially a subset of MHC ligand measures) and kinetics
(on rates and off rates). It is generally accepted that a peptide
binding to an MHC may be recognized by a TCR if it binds
with a pIC50> 6.3, or a half-life> 5 min, or some similar
figure for other binding measures.3 Some peptides binding
at these affinities will become immunodominant epitopes,
others weaker epitopes, and still others will show no T cell

activity. Data on B-cell and T-cell epitopes are currently
limited to a list of “binders”. There are many different assays
used to identify B cell and T cell epitopes. These include,
for cellular immunity, T cell killing, proliferation assays such
as thymidine uptake, etc. and for humoral immunity,
techniques such as enzyme-linked immunosorbent assay
(ELISA) or competitive inhibition assays yield values for
the Antibody Titer. The quantitative data produced by such
assays, while interpretable (a peptide is or is not an epitope),
are not consistent enough to be used outside of the limited
criteria appropriate for a particular set of experimental
conditions. Instead, we have decided to rely on the judgment
of immunologists to define, as accurately as possible, what
are, or are not, T cell epitopes. It should be noted that for
some peptides it is quite common for them to be as classified
both as T cell epitopes and MHC ligands, verifying the
general rule that correlates affinity with immunogenicity.
Thus a T cell epitope is always a MHC ligand, but not all
MHC ligands are T cell epitopes.

DISCUSSION

In this paper we have described a significantly updated,
and much expanded, version of our JenPep database. Since
the first report of Jenpep,4 there has been a rapid increase in
the number and range of data that it contains and in the
sophistication of its underlying database architecture. Jenpep
version 2.0 has increased significantly in size, scope, and
searchability and now contains five categories of im-
munological peptide binding data: TAP transporter ligands,
MHC binding ligands, and peptide-MHC-TCR complexes
as well as B cell and T cell epitopes. For the first three
categories, JenPep records a variety of quantitative binding
measures, and for the last two categories the database
comprises annotated lists of epitopes. As well as the addition
of two extra categories, this represents an increase from
version 1.0 of more than 100% for MHC ligands, 50% for
T cell epitopes, but only a nugatory increase for TAP
transporter ligands due to the paucity of newly available data.

JenPep shares characteristics with a number of recently
emerged databases: functional immunological databases,7,9,10

thermodynamic binding databases, such as ProTherm31 and
BindingDB,32 and a variety of other databases, of which
BIND33 and Brenda34 are good exemplars, whose similarity
the Jenpep system is less clearly defined. Databases contain-
ing experimentally measured binding affinities are a relatively
recent development. The focus of these databases is rigor-
ously measured thermodynamic properties derived from
experimental protocols such as isothermal titration calorim-
etry, which can return not only free energies of binding but
also equivalent enthalpies, entropies, and heat capacities.
Moreover, because these protocols are well standardized,
such databases are able to record easily precise information
on experimental conditions.

Although JenPep also focuses, in part, on thermodynamic
properties, the extreme diversity of experimental measure-
ments we record currently prevents us from matching the
rigor promulgated by databases such as BindingDB. Data
standardization remains a significant issue, and the problems
we face are not trivial. This greatly affects the degree to
which we can automate this process of mining the bioscience
literature. Literature or text mining is the unsupervised
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extraction of data and information directly from machine-
readable text. While it may be easy to identify data-the
sequences of peptides or numerical values such as an IC50-
on the basis of case, or the unequivocal association of an
unambiguous symbol with a fixed format number, the
identification of information is intrinsically harder, being
highly context dependent. Thus far, relatively little has been
published that focuses on the immunological literature. This
is partly due to its scalesperhaps a tenth of PUBMED is
immunologicalsand partly the confusing nature of written
language, which confounds all attempts at text mining.
Whatever people may say, capturing and representing
complex knowledge is time-consuming, expensive, and
surprisingly difficult. Literature mining, useful though it may
be, is simply not enough; we still need people to manage
the process. For example, it is remarkable how diverse the
explanations of a similar piece of work can be. To illustrate
this, let us look at the determination of radiolabeled IC50s
from a competitive peptide assay binding to HLA-A*0201.
The HLA allele could be recorded as the serotype A2 or the
allele A*0201. If the serotype is given, then we cannot be
certain which allele is implied (0201, 0202, 0203, etc). We
also require the sequence of the peptide tested and the IC50
value measured. The peptide sequence is usually given but
sometimes as only as a subsequence of a specific protein
(i.e. residues 189-198). If the identification of the protein
is vague or equivocal, this again proves problematic. The
IC50 value is fairly standard but can be given in several
units: grams per mililiter or molarity. We might also like to
record standard experimental details, such as pH, tempera-
ture, or the concentration range over which the experiment
was conducted. Also the sequence and concentration of the
reference radiolabeled peptide competed against, so that we
may be able to calculated the dissociation constant (KD). Few,
if any, papers contain all these details, and it requires human
interaction to read between the lines in order to extract as
much data as are available.

Clearly, then, there is a certain degree of crossover between
our database and related systems.7,9,10,31-34 However, the
nature of the data within JenPep sets it apart from other
functional immunological databases: it is the first database
in immunology to concentrate on quantitative measurements
and represents an important complement to existing systems.
Most methods for predicting peptides that bind MHCs are
predicated on an apparent dichotomy in affinity between
epitopes and nonepitopes. They utilize a classification scheme
to greatly simplify the great diversity of extant affinity
binding measurements.6 However, recent attempts have
turned to the development of more quantitative models.35-37

The development of JenPep underlies our attempts to
generate statistically sound QSAR models for the prediction
of epitopes, which is vital to our goal of developing computer
aided vaccine design.

First attempts to characterize in silico MHC binding
peptides led to the development of motifs which seek to
describe the specificity of individual MHC alleles. Motifs
currently experience a wide popularity among immunologists
and characterize a short peptide in terms of anchor positions
with highly restricted preferences for certain amino acids:
the presence of certain amino acids at particular positions
that are thought to be essential for binding. For example,
human Class I allele HLA-A*0201, probably the best studied

of all alleles, has anchor residues at two peptide positions:
residue two (P2) and residue nine (P9) for a peptide of length
9. At P2, anchor amino acids would be L and M, and at P9:
V and L. Secondary anchors, residues that are favorable, but
not essential, to peptide binding, may also be present, and
other positions can show preferences for particular residue
types. The motif approach is commendably uncomplicated:
it is simple to implement either by eye or, more systemati-
cally, using a computer to scan protein sequences. However,
there are many fundamental problems with this approach,
the most significant being that it is, at a fundamental level,
a deterministic method. A peptide is either a binder or is
not a binder. Even a brief reading of the literature in
immunology and vaccinology shows that motif matches
produce many false positives and, in all likelihood, an equal
number of false negatives, though these are seldom screened.

As a consequence of these shortcomings, alternative
approaches abound, each exhibiting different strengths and
weaknesses. A significant progression from simple motifs
came with the work of Kenneth Parker.38 This method, which
is based on regression analysis, gives quantitative predictions
in terms of half-lives for the dissociation ofâ2-microglobulin
from the MHC complex. Another common strategy is to use
data from binding experiments to generate matrices able to
predict MHC binding. Positional scanning peptide libraries
(PSPLs) have, for example, been used to generate such
matrices.39-41 Other empirical methods include EpiMatrix
and EpiMer developed by DeGroot and co-workers42 and
TEPITOPE developed by Hammer and colleagues.43 An
alternative strategy has been to use methods from sequence
analysis: Reche et al.44 have recently developed RANKPEP,
a program for epitope prediction based on the use of standard
sequence profiles.

Several groups have used machine learning techniques,
principally artificial neural networks (ANNs) and hidden
Markov models (HMMs), to tackle the problem of predicting
peptide-MHC affinity. However, ANN development is
complicated by several adjustable factors whose optimal
values are seldom known initially. These include the initial
distribution of weights between neurons, the number of
hidden neurons, the gradient of the neuron activation
function, and the training tolerance. Other than chance
effects, ANN suffer from three limiting factors: interpreta-
tion, memorization, and overfitting. As better ANN methods
have developed, and rigorous statistics applied to their use,
overfitting and overtraining have largely been overcome.
Interpretation remains largely intractable: few scientists can
readily decipher the complicated weighting schemes used
by ANNs. Among the most famous names among those
interested in this area has been Vladimir Brusic. His group
has developed a range of machine learning techniques,
including evolutionary algorithms as well as ANNs and
HMMs, aimed at solving MHC peptide binding.45,46His work
contains models of both Class I and Class II MHC alleles
as well as the TAP transporter.47,48 Other machine learning
techniques applied to this problem recently have been support
vector machines49 and HMMs.50

A quite different approach to this problem is based on
atomistic Molecular Dynamic (MD) simulations, which
attempts to calculate the free energy of binding for a given
molecular system. In principle, there is no reliance on known
binding data, as it attempts the de novo prediction of all
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relevant parameters: all that is required is the experimental
structure, or a convincing homology model, of a MHC
peptide complex. Delisi and co-workers were among the first
to apply MD in this area and have, recently, developed a
series of different methods.51,52 Rognan has, over a long
period, also made important contributions to this area.53,54

“Virtual Screening” (VS) is a set of techniques closely related
to MD simulation and is a term derived from pharmaceutical
research: the use of predicted receptor-ligand interactions
to rank and/or filter molecules as an alternative to high
throughput screening. Both VS and MD are based on the
use of pairwise atomistic potential energy functions. There
are two main types of virtual screening methodology that
have been used to predict MHC binding: one from structural
bioinformatics and fold prediction and another from com-
putational chemistry. Bioinformatic approaches to VS include
the work of Margalit and Colleagues, who have proposed a
number of virtual screening methodologies,55,56 each of
increasing complexity. Rognan has developed a VS approach
called FRESNO, which relies on a simple physicochemical
model of host-guest interaction, and used it to predict
peptide binding to MHCs.37 Models were trained on HLA-
A*0201 and H-2Kk data: lipophilic interactions contributed
most to the human allele model, whereas H-bonding pre-
dominated in H-2Kk recognition. In a study of peptides
binding to HLA-B*2705.57 Rognan and colleagues found that
FRESNO out performed six other VS methods (Chemscore,
Dock, FlexX, Gold, Pmf, and Score). Because of the relative
celerity of virtual screening methods compared with MD
methods and its ability to tackle MHC alleles for which no
binding data are available, this method has considerable
potential. While both MD and VS methods hold out the
greatest hope of true de-novo predictions of MHC binding,
their present success rate is not comparable to that of data
driven models. In this respect, we have recently applied a
number of QSAR based data mining techniques to the
problem of T-cell epitope prediction. More specifically, we
have developed models using both a 3D QSAR technique
called CoMSIA and a 2D QSAR approach, which we have
christened the additive method, to determine a number of
class I allele specificities.35,36,58-60

The processing, presentation, and recognition of peptides
by the immune system is a complicated process. Through
the integration of data for peptide binding to TAP, MHC,
TCR, B cell receptors, and soluble antibodies we will allow
the development quantitatively predictive models for the
prediction of the immunogenicity of epitope, multiepitope,
or subunit vaccine.

FUTURE WORK

As part of a continuing program, we shall seek to expand
both the size and scope of JenPep, as we probe more deeply
into the immunological literature, hopefully seeing the
database grow considerably. There is a clear need to augment
our existing set of five databases. Although we cannot
guarantee it, we are nonetheless reasonably confident that
our data for peptide binding to TAP and MHC approaches
completeness. In this regard, our retrospective searching of
available data has reached something like saturation. Apart
from the incremental increase in binding data, principally
as new papers are published, we see the main route to

increased peptide-MHC binding data being through our own
efforts to generate experimental measurements [Walsh,
Doytchinova, Borrow, and Flower, unpublished]. Another
option, of course, is to expand the types of data included in
the database. We could, for example, conceive of including
data on the number of peptide bound MHC complexes
expressed on the surface of antigen presenting cells or archive
relative or normalized binding data or experiment specific
measurements such as MFI values. We do not currently see
these as a priority, however.

For T cell epitopes, and especially B cell epitopes, we
are, however, only taking early, tentative steps into the
literature. There is considerable scope for expanding both
the number and nature of epitope data. In particular, and
within the context of cellular immunity, we would like to
distinguish, where possible, between immunodominant and
nondominant epitopes as well as identify agonist and
antagonist peptides.

It is our goal to increase the depth as well as the breadth
and scope of our treatment of binding data. For example,
we intend to supplement the database with important
experimental conditions such as temperature, pH, radioligand
sequence, radioligand concentrations, etc. used in binding
measurements. Moreover, we should also like to extend
JenPep to facilitate the analysis of nonnatural mutants of
MHC molecules and non-amino acid ligands of MHC
molecules, such as post-translationally modified peptides,
such as glycosylation or phosphorylation61,62 and peptido-
mimetic compounds,63 and druglike non-peptide small mol-
ecules. We could approach this goal from several directions.
One would be to implement a GUI driven substructure search
algorithm,64 or we could employ some form of standard
encoding, such as CHUCKLES,65 corresponding to the
prevalent one-letter code we use now, or we could attempt
to develop our own encoding of nonstandard amino acids.
Likewise, to effect completeness, data concerning other types
of epitope, primarily carbohydrate and lipid epitopes, must,
in time, also be added to the JenPep system.

JenPep would also benefit from a properly annotated list
of whole protein antigens, indicating, where available, where
such antigens, or derivatives thereof, have been shown to
offer protection in vaccination studies. This list would sit
“above” the peptide data described above, as a de facto meta-
layer, and allow us to overcome one of the few serious
shortcomings of our existing system. It is a fair and justifiable
criticism that our database is orientated toward peptide data
and does not offer other kinds of useful and relevant searches.
This is a reflection of the fact that Jenpep originated from
our interest in peptide QSAR.21,35,36,58-60 It would be useful
to be able to search, say, for all data associated with a specific
protein or organism. This type of search would be best
undertaken by querying data associated with particular
antigens and linking them to available, and peptide orientated,
epitope and binding data. In this way we would quite
naturally complement our existing peptide sequence searches
with key word and even whole protein sequence searches
using, say, BLAST.66

We should like to complement our existing thermodynamic
data with kinetic rate constants characterizing peptide binding
to MHCs, as we have already begun to do with the pMHC-
TCR complex data we have added to JenPep. Moreover,
another addition to our cellular immunological data would
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be the addition of data on the thermodynamics and kinetics
of other immunological recognition events, such superantigen
binding to MHCs and TCRs, the interaction of cell surface
coreceptors with the pMHC-TCR complex, or natural killer
cell receptor interactions with MHC and MHC homologues.

Additionally, it would also be interesting to complement
our existing data on binding to the TAP transporter binding
with information on other aspects of the class I and class II
presentation pathways, such as proteasomal and cathepsin
cleavage patterns. Integration of this kind of data is a
prerequisite to the development of sophisticated mathematical
models for antigen presentation, ultimately affording the
ability to predict mechanistically antigens from sequence.

As we have intimated, the compilation of B cell or
antibody epitope data is an area ripe for robust development.
The number of both linear and conformational B cell epitopes
is largesvery much larger than the compilation currently
contained in JenPep. The scope exists therefore to greatly
increase the number of epitopes recorded and to add a data
category for conformational epitopes where we can record
both epitope sequences and thermodynamic data for antibody-
protein interaction.

Taking a lead from the Interpro Project67 we can envisage
an international collaboration aimed at producing a broadly
focused immunogenicity database. In Interpro, existing
databases of sequence families, such as PRINTS,68 have been
combined to produce a more comprehensive and complete
coverage of known sequence families, combining annotation
details from the different component databases. A similar
superdatabase, which incorporates, perhaps, inter alia, Jen-
Pep, FIMM,7 SYFPEITHI,9 and the HIV Molecular Im-
munology database10 into a powerful and comprehensive
database of immunogenic peptides, would appear the obvious
immunological counterpart.

CONCLUSION

Within the context of molecular mechanisms underlying
immunovaccinology, JenPep lays the foundation of a proper
quantitative physicochemical understanding of peptide pre-
sentation and recognition within the immune system. Using
the data compiled within our database system, it should be
possible to model, at both the molecular and phenomenologi-
cal level, the complex behavior of immunological systems
using mathematical expressions involving the binding con-
stants of ligand-receptors interactions.69 The database is also
a practical tool of utilitarian value in the search for new
vaccines, and we have attempted to build the database, and
its interface, to meet these joint needs. JenPep itself, unique
in the data it archives, is both a high-quality and value-added
database, but, useful as it is, the database is clearly less an
end and more a beginning. As JenPep grows we will
endeavor to increase its usefulness by both deepening our
treatment of its thermodynamic aspects and also by broaden-
ing the breadth, scope, and quality of the data we cover.

ACKNOWLEDGMENT

We should like to thank Debra Taylor, Prof. Peter
Beverley, Dr. Vladimir Brusic, Dr. Persephone Borrow, and
Dr. Anne De Groot for their help and encouragement.

REFERENCES AND NOTES

(1) De Groot A. S.; Sbai, H.; Aubin, C. S.; McMurry, J.; Martin, W.
Immuno-informatics: Mining genomes for vaccine components.
Immunol. Cell Biol.2002, 80, 255-269.

(2) Sette, A.; Livingston, B.; McKinney, D.; Appella, E.; Fikes, J.; Sidney,
J.; Newman, M.; Chesnut, R. The development of multi-epitope
vaccines: epitope identification, vaccine design and clinical evaluation.
Biologicals2001, 29, 271-276.

(3) Sette, A.; Vitiello, A.; Reherman, B.; Fowler, P.; Nayersina, R.; Kast,
W. M.; Melief, C. J.; Oseroff, C.; Yuan, L.; Ruppert, J. The relationship
between class I binding affinity and immunogenicity of potential
cytotoxic T cell epitopes.J. Immunol.1994, 153, 5586-5592.

(4) Blythe, M. J.; Doytchinova, I. A.; Flower, D. R. JenPep, a database
of quantitative functional peptide data for immunology.Bioinformatics
2002, 18, 434-439.

(5) Brusic, V.; Zeleznikow, J.; Petrovsky, N. Molecular immunology
databases and data repositories.J. Immunol. Methods2002, 238, 17-
28.

(6) Brusic, V.; Rudy, G.; Harrison, L. C. MHCPEP, a database of MHC-
binding peptides: update 1997.Nucleic Acids Res.1998, 26, 368-
371.

(7) Schonbach, C.; Koh, J. L; Flower, D. R.; Wong, L.; Brusic, V. FIMM,
a database of functional molecular immunology: update 2002.Nucleic
Acids Res. 2002, 30, 226-229.

(8) MHCBN. Bhasin, M.; Singh, H.; Raghava, G. P. S. MHCBN: A
Comprehensive Database of MHC Binding and Non-Binding Peptides.
Nucleic Acids Res.2002(online) (http://www3.oup.co.uk/nar/database/
summary/180.

(9) Rammensee, H.; Bachmann, J.; Emmerich, N. P.; Bachor, O. A.;
Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide
motifs. Immunogenetics1999, 50, 213-219.

(10) Korber, B. T. M.; Brander, C.; Haynes, B. F.; Koup, R.; Kuiken, C.;
Moore, J. P.; Walker, B. D.; Watkins, D.HIV molecular Immunology
2001; Los Alamos National Laboratory: Theoretical Biology and
Biophysics, Los Alamos, NM, 2001.

(11) Williams, A.; Peh, C. A.; Elliott, T. The cell biology of MHC class I
antigen presentation.Tissue Antigens2002, 59, 3-17.

(12) Gromme, M.; Neefjes, J. Antigen degradation or presentation by MHC
class I molecules via classical and nonclassical pathways.Mol.
Immunol.2002, 3, 181-202.

(13) van Endert, P. M.; Saveanu, L.; Hewitt, E. W.; Lehner, P. Powering
the peptide pump: TAP crosstalk with energetic nucleotides.Trends
Biochem. Sci.2002, 27, 454-461.

(14) Ulrich, H. D. Natural substrates of the proteasome and their recognition
by the ubiquitin system.Curr. Top Microbiol. Immunol. 2002, 268,
137-174.

(15) Lu, J.; Wettstein, P. J.; Higashimoto, Y.; Appella, E.; Celis, E. TAP-
independent presentation of CTL epitopes by trojan antigens.J.
Immunol.2001, 166, 7063-7071.

(16) Serwold, T.; Gonzalez, F.; Kim, J.; Jacob, R.; Shastri, N. ERAAP
customizes peptides for MHC class I molecules in the endoplasmic
reticulum.Nature2002, 41, 480-483.

(17) Gil-Torregrosa, B. C.; Castano, A. R.; Lopez, D.; Del, Val M.
Generation of MHC class I peptide antigens by protein processing in
the secretory route by furin.Traffic 2000, 1, 641-651.

(18) Davis, D. M. Assembly of the immunological synapse for T cells and
NK cells. Trends Immunol.2002, 23, 356-363.

(19) Marsh, S. G.; Albert, E. D.; Bodmer, W. F ; Bontrop, R. E.; Dupont,
B.; Erlich, H. A.; Geraghty, D. E.; Hansen, J. A.; Mach, B.; Mayr,
W. R.; Parham, P.; Petersdorf, E. W.; Sasazuki, T.; Schreuder, G.
M.; Strominger, J. L.; Svejgaard, A.; Terasaki, P. I. Nomenclature
for factors of the HLA system, 2002.Hum. Immunol.2002, 63, 1213-
1268.

(20) Sette, A.; Buus, S.; Appella, E.; Smith, J. A.; Chesnut, R.; Miles, C.;
Colon, S. M.; Grey, H. M. Prediction of major histocompatibility
complex binding regions of protein antigens by sequence pattern
analysis.Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 3296-3300.

(21) Flower, D. R.; Doytchinova, I. A.; Paine, K.; Taylor, P.; Blythe, M.
J.; Lamponi, D.; Zygouri, C.; Guan, P.; McSparron, H.; Kirkbride, H.
Computational Vaccine Design. InDrug Design: Cutting Edge
Approaches; Flower, D. R., Ed.; 2002.

(22) Geschwinde, E; Schonig, H.-J.Postgresql: DeVeloper’s Handbook,
1st ed.; SAMS: 2001.

(23) UnGraph. Version 4.0. http://www. biosoft.com.
(24) Marshall, K. W.; Liu, A. F.; Canales, J.; Perahia, B.; Jorgensen, B.;

Gantzos, R. D.; Aguilar, B.; Devaux, B.; Rothbard, J. B. Role of the
polymorphic residues in HLA-DR molecules in allele-specific binding
of peptide ligands.J. Immunol.1994, 152, 4946-4953.

(25) Parker, K. C.; DiBrino, M.; Hull, L.; Coligan, J. E. The beta
2-microglobulin dissociation rate is an accurate measure of the stability
of MHC class I heterotrimers and depends on which peptide is bound.
J. Immunol. 1992, 149, 1896-1903.

1286 J. Chem. Inf. Comput. Sci., Vol. 43, No. 4, 2003 MCSPARRON ET AL.



(26) Roos, H.; Karlsson, R.; Nilshans, H.; Persson, A. Thermodynamic
analysis of protein interactions with biosensor technology.J. Mol.
Recognit.1998, 11, 204-210.

(27) Pierce, M. M.; Raman. C. S.; Nall, B. T. Isothermal titration
calorimetry of protein-protein interactions.Methods1999, 19, 213-
221.

(28) Ruppert, J.; Sidney, J.; Celis, E.; Kubo, R. T.; Grey, H. M.; Sette, A.
Prominent role of secondary anchor residues in peptide binding to
HLA-A2.1 molecules.Cell 1994, 74, 929-934.

(29) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant
(K1) and the concentration of inhibitor which causes 50% inhibition
(I50) of an enzymatic reaction.Biochem. Pharmacol.1973, 22, 3099-
3108.

(30) Sato, A. K.; Zarutskie, J. A.; Rushe, M. M.; Lomakin, A.; Natarajan,
S. K.; Sadegh-Nasseri, S.; Benedek, G. B.; Stern, L. J. Determinants
of the peptide-induced conformational change in the human class II
major histocompatibility complex protein HLA-DR1.J. Biol. Chem.
2000, 275, 2165-2173.

(31) Sarai, A.; Gromiha, M. M.; An, J.; Prabakaran, P.; Selvaraj, S.; Kono,
H.; Oobatake, M.; Uedaira, H. Thermodynamic databases for proteins
and protein-nucleic acid interactions.Biopolymers2002, 61, 121-126.

(32) Chen, X.; Lin, Y.; Liu, M.; Gilson, M. K. The Binding Database:
data management and interface design.Bioinformatics2002, 18, 130-
139.

(33) Bader, G. D.; Hogue, C. W. BIND- -a data specification for storing
and describing biomolecular interactions, molecular complexes and
pathways.Bioinformatics2000, 16, 465-477.

(34) Schomburg, I.; Chang, A.; Hofmann, O.; Ebeling, C.; Ehrentreich,
F.; Schomburg, D. BRENDA: a resource for enzyme data and
metabolic information.Trends Biochem. Sci.2002, 27, 54-56.

(35) Doytchiniva, I. A.; Flower, D. R. Towards the Quantitative Prediction
of T-Cell Epitopes: CoMFA and CoMSIA studies of Peptides with
Affinity to Class I MHC Molecule HLA-A*0201.J. Med. Chem.2001,
44, 3572-3581.

(36) Doytchiniva, I. A.; Flower, D. R. Quantitative approaches to compu-
tational vaccinology.Immunol. Cell Biol.2002, 80, 270-279.

(37) Rognan, D.; Lauemoller, S. L.; Holm, A.; Buus, S.; Tschinke, V.
Predicting binding affinities of protein ligands from three-dimensional
models: application to peptide binding to class I major histocompat-
ibility proteins.J. Med. Chem.1999, 42, 4650-4658.

(38) Parker, K. C.; Shields, M.; DiBrino, M.; Brooks, A.; Coligan, J. E.
Peptide binding to MHC class I molecules: implications for antigenic
peptide prediction.Immunol. Res.1995, 14, 34-57.

(39) Stevens, J.; Wiesmuller, K. H.; Barker, P. J.; Walden, P.; Butcher, G.
W.; Joly, E. Efficient generation of major histocompatibility complex
class I-peptide complexes using synthetic peptide libraries.J. Biol.
Chem.1998, 273, 2874-2884.

(40) Stryhn, A.; Pedersen, L. O.; Romme, T.; Holm, C. B.; Holm, A.; Buus,
S. Peptide binding specificity of major histocompatibility complex class
I resolved into an array of apparently independent subspecificities:
quantitation by peptide libraries and improved prediction of binding.
Eur. J. Immunol.1996, 26, 1911-1818.

(41) Udaka, K.; Wiesmuller, K. H.; Kienle, S.; Jung, G.; Tamamura, H.;
Yamagishi, H.; Okumura, K.; Walden, P.; Suto, T.; Kawasaki, T. An
automated prediction of MHC class I-binding peptides based on
positional scanning with peptide libraries.Immunogenetics2000, 51,
816-828.

(42) De Groot, A. S.; Sbai, H.; Aubin, C. S.; McMurry, J.; Martin, W.
Immuno-informatics: Mining genomes for vaccine components.
Immunol. Cell Biol.2002, 80, 255-269.

(43) Kwok, W. W.; Gebe, J. A.; Liu, A.; Agar, S.; Ptacek, N.; Hammer,
J.; Koelle, D. M.; Nepom, G. T. Rapid epitope identification from
complex class-II-restricted T-cell antigens.Trends. Immunol.2001,
22, 583-588.

(44) Reche, P.; Glutting, J.; Reinherz, E. Prediction of MHC class I binding
peptides using profile motifs.Hum. Immunol.2002, 63, 701-708.

(45) Honeyman, M. C.; Brusic, V.; Stone, N. L.; Harrison, L. C. Neural
network-based prediction of candidate T-cell epitopes.Nat. Biotechnol.
1998, 16, 966-969.

(46) Brusic, V.; Rudy, G.; Honeyman, G.; Hammer, J.; Harrison, L.
Prediction of MHC class II-binding peptides using an evolutionary
algorithm and artificial neural network.Bioinformatics1998a, 14,
121-130.

(47) Daniel, S.; Brusic, V.; Caillat-Zucman, S.; Petrovsky, N.; Harrison,
L.; Riganelli, D.; Sinigaglia, F.; Gallazzi, F.; Hammer, J.; van Endert,
P. M. Relationship between peptide selectivities of human transporters
associated with antigen processing and HLA class I molecules.
Immunol.1998, 161, 617-624.

(48) Brusic, V.; van Endert, P.; Zeleznikow, J.; Daniel, S.; Hammer, J.;
Petrovsky, N. A. Neural network model approach to the study of

human TAP transporter.In Silico Biol. 1999, 1, 109-121.
(49) Donnes, P.; Elofsson, A. Prediction of MHC class I binding peptides,

using SVMHC. BMCBioinformatics2002, 3, 25-32.
(50) Udaka, K.; Mamitsuka, H.; Nakaseko, Y.; Abe, N. Prediction of MHC

Class I Binding Peptides by a Query Learning Algorithm Based on
Hidden Markov Models.J. Biol. Phys.2002, 28, 183-194

(51) Sezerman, U.; Vajda, S.; DeLisi, C. Free energy mapping of class I
MHC molecules and structural determination of bound peptides.
Protein Sci.1996, 5, 1272-1281.

(52) Vasmatzis, G.; Zhang, C.; Cornette, J. L.; DeLisi, C. Computational
determination of side chain specificity for pockets in class I MHC
molecules.Mol. Immunol.1996, 33, 1231-1239.

(53) Rognan, D.; Reddehase, M. J.; Koszinowski, U. H.; Folkers, G.
Molecular modeling of an antigenic complex between a viral peptide
and a class I major histocompatibility glycoprotein.Proteins1992,
13, 70-85.

(54) Rognan, D.; Scapozza, L.; Folkers, G.; Daser, A. Molecular dynamics
simulation of MHC-peptide complexes as a tool for predicting potential
T cell epitopes.Biochemistry1994, 33, 11476-11485.

(55) Altuvia, Y.; Sette, A.; Sidney, J.; Southwood, S.; Margalit, H. A
structure-based algorithm to predict potential binding peptides to MHC
molecules with hydrophobic binding pockets.Hum. Immunol.1997,
58, 1-11.

(56) Schueler-Furman, O.; Altuvia, Y.; Sette, A.; Margalit, H. Structure-
based prediction of binding peptides to MHC class I molecules:
application to a broad range of MHC alleles.Protein Sci.2000, 9,
1838-1846.

(57) Logean, A.; Sette, A.; Rognan, D. Customized versus universal scoring
functions: application to class I MHC-peptide binding free energy
predictions.Bioorg. Med. Chem. Lett.2001, 11, 675-679.

(58) Doytchinova, I. A.; Blythe, M. J.; Flower, D. R. An additive method
for the prediction of binding affinity. Application MHC Class I
Molecule HLA-A*0201.J. Proteome Res.2002, 1, 263-272.

(59) Doytchinova, I. A.; Flower, D. R. Physicochemical explanation of
peptide binding to HLA-A*0201 major histocompatibility complex.
A Three-Dimensional Quantitative Structure- Activity Relationship
Study.Proteins2002a, 48, 505-518.

(60) Doytchinov, I. A.; Flower, D. R. A Comparative Molecular Similarity
Index Analysis (CoMSIA) study identifies an HLA-A2 binding
supermotif.J. Comput.-Aided Mol. Design2002, 16, 535-544.

(61) Kastrup, I. B.; Stevanovic, S.; Arsequell, G.; Valencia, G.; Zeuthen,
J.; Rammensee, H. G.; Elliott, T.; Haurum, J. S. Lectin purified human
class I MHC-derived peptides: evidence for presentation of glyco-
peptides in vivo.Tissue Antigens2000, 56, 129-135.

(62) Zarling, A. L.; Ficarro, S. B.; White, F. M.; Shabanowitz, J.; Hunt,
D. F.; Engelhard, V. H. Phosphorylated peptides are naturally
processed and presented by major histocompatibility complex class I
molecules in vivo.J. Exp. Med.2001, 192, 1755-1762.

(63) Krebs, S.; Rognan, D. From peptides to peptidomimetics: design of
nonpeptide ligands for major histocompatibility proteins.Pharm. Acta
HelV. 1998, 73, 173-181.

(64) Stobaugh, R. E. Chemical Substructure Searching.J. Chem. Inf.
Comput. Sci.1985, 25, 271-275.

(65) Siani, M. A.; Weininger, D.; Blaney, J. M. CHUCKLES: a method
for representing and searching peptide and peptoid sequences on both
monomer and atomic levels.J. Chem. Inf. Comput. Sci.1994, 34, 588-
593.

(66) Altschul, S. F.; Madden, T. L.; Scha¨ffer, A. A.; Zhang, J.; Zhang, Z.;
Miller, W.; Lipman, D. J. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs,Nucleic Acids Res.
1997, 25, 3389-3402.

(67) Apweiler, R.; Attwood, T. K.; Bairoch, A.; Bateman, A.; Birney, E.;
Biswas, M.; Bucher, P.; Cerutti, L.; Corpet, F.; Croning, M. D.; Durbin,
R., Falquet, L.; Fleischmann, W.; Gouzy, J.; Hermjakob, H.; Hulo,
N.; Jonassen, I.; Kahn, D.; Kanapin, A.; Karavidopoulou, Y.; Lopez,
R.; Marx, B.; Mulder, N. J.; Oinn, T. M.; Pagni, M.; Servant, F. The
InterPro database, an integrated documentation resource for protein
families, domains and functional sites.Nucleic Acids Res.2001, 29,
37-40.

(68) Attwood, T. K.; Blythe, M. J.; Flower, D. R.; Gaulton, A.; Mabey, J.
E.; Maudling, N.; McGregor, L.; Mitchell, A. L.; Moulton, G.; Paine,
K.; Scordis, P. PRINTS and PRINTS-S shed light on protein ancestry.
Nucleic Acids Res.2002, 30, 239-241.

(69) Andersen, P. S.; Menne, C.; Mariuzza, R. A.; Geisler, C.; Karjalainen,
K. A response calculus for immobilized T cell receptor ligands.J.
Biol. Chem.2001, 276, 49125-49132.

CI030461E

JENPEP: RESOURCE FORIMMUNOBIOLOGY AND VACCINOLOGY J. Chem. Inf. Comput. Sci., Vol. 43, No. 4, 20031287


