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Abstract: Quantitative structure – activity relationships (QSAR) is a well established ligand-based approach to drug de-
sign. It correlates changes in the chemical structure of a series of compounds with changes in their biological activities. 
Peptides of equal length which bind to a certain protein are an excellent target for QSAR. In the present review, we sum-
marize our experience in QSAR studies of peptides acting as T-cell epitopes. T-cell epitopes are protein fragments pre-
sented on the cell surface which afford the immune system the opportunity to detect and respond to both intracellular and 
extracellular pathogens. Epitope-based vaccines are a new generation of vaccines with lower side effects. The process of 
antigen presentation, which includes proteasome cleavage, TAP and MHC binding, has been modeled and analyzed by 
QSAR. Derived QSAR models are highly predictive, allowing us to design and test in vitro MHC superbinders. All mod-
els have been implemented in servers for in silico prediction of MHC binders and T-cell epitopes. In practice, better initial 
in silico prediction leads to improved subsequent experimental research on epitope-based vaccines.  
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INTRODUCTION 

 Vaccination is one of the greatest boons to mankind. To-
gether with other medical discoveries, such as antibiotics, 
vaccines have greatly reduced mortality and morbidity re-
sulting from infectious diseases. Together with advances in 
agriculture powered by the Haber process, vaccines have led 
to an unprecedented burgeoning of the global population and 
reduction of human misery resulting from uncontrolled epi-
demics. The history of vaccines began with Edward Jenner’s 
assault on smallpox. On 14th May 1796, he used cowpox, a 
virus related to smallpox, to build protective immunity in his 
gardener's son. The culmination of Jenner's work led to the 
1980 declaration by the World Health Organization that 
smallpox had been eradicated. There are now similar global 
campaigns against polio and tuberculosis. BCG, the main 
vaccine against tuberculosis, is perhaps, the most widely 
used vaccine worldwide and is an attenuated or weakened 
form of the tuberculosis bacterium. Most established vac-
cines fall into one of two categories: they are either whole 
viruses or bacteria (albeit chemically treated or attenuated 
forms thereof) or they are single proteins derived from whole 
pathogenic bacteria or viruses.  

 More recently, vaccine discovery has attempted to re-
place older types of vaccine with rationally designed peptide 
or DNA vaccines. These vaccines are physically smaller, 
being based on one or more epitopes. Epitopes are short pep-
tides recognized by the immune system. In the case of vac-
cines, this recognition should lead to stimulation of specific, 
protective immunity against disease and mitigation of subse-
quent infections. As the genomes of pathogenic microbes 
genomes have been sequenced, epitope-based vaccine dis-
covery has moved firmly into the arena of rationale pro-
teomics.  
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ANTIGEN PROCESSING AND PRESENTATION 

 The main processing pathway for Major Histocompatibil-
ity Complex (MHC) class I ligands involves degradation of 
intracellular viral or self proteins by the proteasome, fol-
lowed by transport of the products by the transporter associ-
ated with antigen processing (TAP) to the endoplasmic re-
ticulum (ER), where peptides are bound to MHC class I 
molecules, and then presented on the cell surface (Fig. 1, 
class I pathway). The proteasome is responsible for generat-
ing the C terminus but not the N terminus of the final pre-
sented peptide (Crauu et al., 1997; Mo et al., 1999; Serwold 
and Shastri, 1999; Cascio et al., 2001). The proteasome is a 
multimeric proteinase with three active sites: a site with 
trypsin-like activity (cleavage after basic residues), one with 
chymotrypsin-like activity (cleavage after hydrophobic resi-
dues), and another with peptidylglutamyl-peptide hydrolytic 
activity (cleavage after acidic residues) (Orlowski and 
Michaud, 1989; Djaballah, 1992; Orlowski et al., 1993). In 
addition, in vertebrates there are three -interferon-inducible 
subunits that replace the constitutive subunits (Tanaka and 
Kasahara, 1998) and assemble the immunoproteasome. The 
immunoproteasomes have an altered hierarchy of proteoso-
mal cleavage, enhancing cleavage after basic and hydropho-
bic residues and inhibiting cleavage after acidic residues 
(van den Eynde and Morel, 2001; Toes et al., 2001). This is 
in accord with the amino acid preferences for binding to 
MHC class I molecules at the C terminus (Rammensee et al., 
1995).  

 TAP is an ATP-dependent peptide transport protein that 
belongs to the ATP-binding cassette (ABC) family of trans-
porters. This family transports across membranes a wide 
range of molecules, from small sugars to large polypeptides 
(Monaco et al., 1990). There are two TAP proteins (TAP-1 
and TAP-2) which form a transmembrane (TM) heterodimer. 
Both proteins encode one hydrophobic TM domain and one 
ATP-binding domain (Meyer et al., 1994). Extant experi- 
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mental studies have shown that TAP prefers peptides of 
eight or more amino acids with hydrophobic or basic resi-
dues at the carboxy terminus (Müller et al., 1994; Schu-
macher et al., 1994). TAP-mediated antigen presentation is 
important not only for cytosolic antigens but also for most 
epitopes within membrane or secretory proteins (Lautscham 
et al., 2003). The TAP-dependent pathway is the principal 
processing route for peptides binding HLA-A1, HLA-A3, 
HLA-A11, HLA-A24, HLA-B15 and HLA-B27 (Mormung 
et al., 1994; de la Salle et al., 1997). Some peptides are able 
to access the ER via other, TAP-independent mechanisms. 
Examples of alleles exhibiting only partial dependence on 
TAP include HLA-A2, HLA-A23, HLA-B7 and HLA-B8 
(Henderson et al., 1992; Guéguen et al., 1994; Smith and 
Lutz, 1996; Khanna et al., 1996). 

 Extracelular bacterial or parasite antigens are taken up 
into acidified intracellular vesicles by phagocytic cells or 
endocytosed by other professional antigen-presenting cells 
and degraded to oligopeptides (Fig. 1, class II pathway). 
MHC class II molecules synthesized in the ER pass through 
such vesicles, bind peptide fragments of the antigen, and 
then transport them to the cell surface. 

 MHC proteins are both polygenic (i.e. there are more 
than one MHC class I and MHC class II genes) and poly-
morphic (i.e. there are many alleles of each gene) (Janeway, 
2001). Each class of MHC has several loci: HLA-A, HLA-B 
and HLA-C for class I and HLA-DR, HLA-DQ and HLA-
DP for class II. MHC alleles may differ by as many as 30 
amino acid substitutions, most of them are found within the 

binding site and are critical for the specificity of peptide 
binding and therefore for T cell recognition (Saper et al., 
1991; Smith et al., 1996). Such an uncommon degree of 
polymorphism implies a selective pressure to create and 
maintain it. Different polymorphic MHC alleles have differ-
ent peptide specificities: each allele binds peptides exhibiting 
particular sequence patterns. 

 The complex peptide-MHC class I molecule presented on 
the cell surface are recognized by CD8 T cells, while the 
complex peptide-MHC class II molecule – by CD4 T cells. 
The function of CD8 T cells is to kill infected cells; this is an 
important means of eliminating sources of new viral particles 
and obligate cytosolic bacteria, thus freeing the host of infec-
tion. CD4 T cells are specialized to activate other cells and 
fall into two functional classes: Th1 cells, which activate 
macrophages to kill the intravesicular pathogens they harbor, 
and Th2 cells or helper T cells, which activate B cells to 
make antibody. Peptide binding by MHC is, in all likelihood, 
the bottleneck – that is to say the most discriminating phase - 
in the recognition of epitopes.  

EPITOPE PREDICTION IN PROTEOMICS: STATE 
OF THE ART 

 The identification of so-called “binding motifs” began in 
the 1980s. Motifs seek to characterize peptide specificity of a 
particular MHC molecule in terms of dominant anchor posi-
tions which exhibit strong predilections for a constrained 
group of amino acids. For example, arguably the most well 
studied of human MHC proteins - HLA-A*0201 - has anchor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (1). MHC class I (left) and class II (right) pathways (http://stratikos.googlepages.com/mhc). 
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residues at peptide positions p2 (which will accept amino 
acids Met and Leu) and p9 (which will accept amino acids 
Leu and Val).  

 Motifs have proved to be very popular, and very widely 
exploited; they are both simple to use and very simple to 
understand. Notwithstanding such lucent simplicity, funda-
mental technical problems limit their utility: motifs generate 
many false negatives and many false positives. Moreover, 
peptides are viewed as either binders or non-binders ignoring 
the extra dimension of understanding that comes from con-
sideration of affinity. It has been obvious for some time that 
the whole peptide contributes to the determination of affin-
ity, not just a few anchor residues, and likewise T-cell-
mediated immunogenicity. Effective models of binding must 
employ rather more intricate and complex representations of 
the biophysical phenomena of binding. There is now a profu-
sion of sequence-based methods for prediction of T-cell epi-
topes, most relying on the prediction of peptide-MHC bind-
ing (Flower et al., 2003). Successfully modelling peptide 
specificity exhibited by MHCs allows pre-selection of can-
didate peptides, which, in turn, can help identify immuno-
genic epitopes. Models which accommodate affinity allow us 
to modify and modulate affinity, and thus aspects of immu-
nogenicity, in a rationale manner.  

 Class I MHC alleles have a binding groove which is 
closed at both ends. Peptides are locked at either end of the 
groove, which allows us to predict with precision which 
residues are positioned in the groove. Many methods have 
been used to predict MHC binding and class I prediction is 
regarded as being relatively successful, with high reported 
prediction accuracies (Dönnes and Elofsson, 2002). A suc-
cession of ever more sophisticated methods has been applied 
to the problem: starting with Parker’s BIMAS, and progress-
ing through Artificial Neural Networks; Hidden Markov 
Models; to Support Vector Machines (Flower et al., 2003; 
Flower, 2003). These have engendered a complete panoply 
of implementations available via the Internet.  

 Support Vector Machines (SVMs) are an artificial intelli-
gence technique whose inherent accuracy is compelling. Us-
ing an appropriate amino acid representation, a single SVM 
is a binary classifier which identifies a decision boundary 
between two classes - in this case between epitope and non-
epitope - by maximising the margin between them, choosing 
a linear separation in feature space. As a result of their suc-
cess, a whole array of SVM-based methods for class I epi-
tope prediction have developed (Dönnes and Elofsson, 2002; 
Zhao et al., 2003; Riedesel et al., 2004; Bhasin and Raghava, 
2004a; Bhasin and Raghava, 2004b; Bhasin and Raghava, 
2004c; Cui et al., 2007). Most SVM methods undertake dis-
criminant analysis, but there has also been encouraging per-
formance with quantitative prediction using support vector 
regression (Liu et al., 2006). 

 The other significant recent trend in epitope prediction 
has been the use of structures of MHCs and MHC-peptide 
complexes. These methods use two main techniques: dock-
ing and molecular dynamics (MD) simulation. Leveraging 
earlier work (Altuvia et al., 1995; Schueler-Furman et al., 
2000), several approaches apply docking methods (scoring 
functions derived from computational chemistry or threading 
methods derived from structural bioinformatics) to identify 

MHC binders (Tong et al., 2004; Bordner and Abagyan, 
2006; Bui et al., 2006; Jojic et al., 2006; Tong et al., 
2006a,b). Several workers have used molecular dynamics as 
a means of realising affinity prediction (Davies et al., 2003; 
Petrone and Garcia, 2004; Zacharias and Springer, 2004; 
Fagerberg et al., 2006). However, the availability of comput-
ing resources able to sustain the requisite size and duration 
of simulation necessary for obtaining free energies of bind-
ing for medium sized systems such peptide-MHC complexes 
has hampered development of easily deployable techniques. 
However, work by Wan and colleagues have begun to ad-
dress this. They make use of high performance computing 
deployed via the nascent GRID. This approach achieves 
more realistic simulations of an escalating series of systems 
of increasing scale (Wan et al., 2004; Wan et al., 2005a; 
Wan et al., 2005b). Another interesting piece of work (Da-
vies et al., 2006) combines MD with multivariate statistics to 
produce a hybrid approach to prediction. 

 In recent times, several attempts to incorporate compo-
nents of the class I antigen presentation pathway, such as 
proteasome cleavage (Saxova et al., 2003) and TAP binding 
(Bhasin and Raghava, 2004b; Doytchinova et al., 2004a), 
have been made, which have created combined approaches 
to T-cell epitope prediction (Peters and Sette, 2005; Larsen 
et al., 2005; Dönnes and Kohlbacher, 2005; Doytchinova et 
al., 2006a). These approaches show encouraging improve-
ments compared to methods which only rely on MHC-
binding. They seek to decrease the number of potential epi-
topes using subsidiary component stages as additional se-
quential or concurrent filters. 

 Prediction of peptide binding to class II MHCs is greatly 
complicated by their open peptide binding groove. Class II 
MHCs can, as a result, bind much longer peptides (25+ resi-
dues) compared to peptide binding to class I MHCs (at most 
15 residues). The grooves of MHC class II alleles will only 
accommodate 9 to 11 residues of the bound peptide. Class II 
peptides have the potential complication of being able to 
bind into the groove in one of several distinct registers (po-
tential alignments between groove and antigenic peptide). 
Moreover, several studies have indicated that residues while 
lie outside the binding groove (flanking residues) also affect 
the magnitude of binding affinity (Carson et al., 1997; God-
kin et al., 2001). To complicate the development of effective 
predictive schemes still further, available data for class II is 
sparse compared to that available for class I; when coupled 
to the greater intrinsic complexity of the prediction problem 
itself, this results in a much reduced level of reported accu-
racy.  

 As a consequence of observed problems with the reliabil-
ity of class II predictions, a wide range of imaginative and 
innovative approaches have been used in attempts to solve 
this problem. Pattern recognition techniques used include 
ANN (Noguchi et al., 2001; Burden and Winkler, 2005) and 
SVM (Bhasin and Raghava, 2004c; Yang and Johnson, 
2005). Typically, a binding core is first estimated or de-
clared, and subsequently the binding affinity is predicted for 
an unknown peptide from this estimate. This two stage pro-
cedure separates the task into a fixed-length problem and an 
alignment problem. Approaches for solving the dynamic 
variable-length nature of the class II prediction problem have 

Not For Distribution



76    Current Proteomics, 2008, Vol. 5, No. 2 Doytchinova and Flower 

however shown promise. Methods include an iterative 
“meta-search” algorithm (Mallios, 2001), an iterative PLS 
method (Doytchinova and Flower, 2003a), Hidden Markov 
Models (Noguchi et al., 2002; Murugan and Dai, 2005), an 
Ant Colony search (Karpenko et al., 2005), and a Gibbs 
sampling algorithm (Nielsen et al., 2004). 

 However, there is another productive, if largely under-
valued, strand in the prediction of MHC peptide interactions: 
Quantitative Structure Activity Relationship (QSAR). Until 
recently, there were few if any published examples that ap-
plied QSAR methodology to questions arising from the im-
mune system, nor indeed are there that many papers that 
apply QSAR techniques to any bioinformatic problem. The 
difference between QSAR and artificial intelligence methods 
is primarily a semantic one. In practice they achieve the 
same goal and work in similar ways, but QSAR techniques 
tend to be based on different, and possibly more rigorous, 
types of statistical analyses, including, amongst others, mul-
tiple linear and continuum regression, discriminant analysis, 
and PLS. Both AI and QSAR based methods make use of a 
representation of molecule structure (either as sequence or in 
terms of 3D structure) and a measure of binding (either dis-
crete – binders vs. non-binders – or in terms of continuous, 
quantitative affinities).  

QSAR IN THE CONTEXT OF PROTEOMICS AND 

IMMUNOINFORMATICS 

 The basic idea of the QSAR is that the chemical structure 
of a molecule determines its biological activity. The chemi-
cal structure is represented by a number of calculated and/or 
experimentally derived descriptors which are correlated with 
one quantitative or qualitative value representing some 
measure of activity. Although this relationship was long 
known intuitively by many scientists, Corwin Hansch is con-
sidered officially as the father of QSAR. In his publications 
in the early 1960s, Hansch for the first time defines quantita-
tively the relationship between changes in the chemical 
structure of structurally related compounds and changes in 
their biological activities (Hansch et al., 1962). Since then, 
QSAR has become a fundamental ligand-based approach in 
drug and molecular design, and in environmental risk as-
sessment. Thousands of QSAR models have been published 
in the literature and the theory and practice of QSAR has 
entered the medicinal chemistry textbooks.  

 The deciphering of the human genome poured forth an 
enormous amount of scientific information and opened up an 
entirely new era in biology. This discovery is of such impor-
tant that large areas of science are now divided into pre- and 
postgenomic eras. In the postgenomic era, high-tech methods 
are a vital resource for any bioscience. Many new -omics 
have appeared and developed during the last decade. Pro-
teomics is a research area that includes identification, charac-
terization, and quantification of the proteome. The proteome 
is the whole protein content expressed by a genome in a cell, 
tissue, or organism in healthy and disease states. Proteomics 
can provide information for drug discovery including target 
identification and validation (Greenbaum et al., 2002; 
Drummelsmith et al., 2003), lead selection (Bleicher et al., 
2003) and optimization (Baker et al., 2002; Kridel et al., 
2004), toxicity assessment (Imanishi and Harada, 2004; 

Keightley et al., 2004), biomarkers discovery (Celis et al., 
2000; Park et al., 2002; Zhu et al., 2003; Ding et al., 2004; 
Petricoin et al., 2004; Kageyama et al., 2004). Only a small 
part (< 5%) of the proteome, namely the druggable pro-
teome, is readily modulated by a small-molecule drug.  

 The immunome is that part of the microorganism’s pro-
teome that interfaces with the host immune system. It con-
sists of epitopes and antigens able to pass through a series of 
biochemical processes in the cell, described in the previous 
section. If there are enough data for each step of the process, 
like affinity assessments (IC50, BL50, etc.), class affiliation 
(epitopes vs. non-epitopes, binders vs. non-binders), then the 
process can be modeled in order to predict which part of the 
antigen will act as an epitope. Methods used for compilation 
and mining of immunological data, process modeling, and 
epitope prediction comprises immunoinformatics, a subdis-
cipline within bioinformatics. The appropriate use of immu-
noinformatics greatly improves the efficiency of immunol-
ogy research.  

 One of the principal goals of immunoinformatics is to 
develop computer aided vaccine design, or computational 
vaccinology, and apply it to the quest for new vaccines. At 
the heart of computational vaccinology is epitope prediction. 
The focus of our recent studies is the development of meth-
ods for T-cell epitope prediction. We applied the QSAR phi-
losophy to immunology and vaccinology. In the present re-
view we describe our experience in this field. Antigen proc-
essing and presentation were modeled by QSAR methods 
and the models which result were used subsequently to pre-
dict T-cell epitopes. Some of the models were tested experi-
mentally and used in the design of MHC superbinders. All 
derived models are freely accessible via our web-servers 
MHCPred and EpiJen. 

 Since the value of QSAR approaches is under appreci-
ated in proteomics and immunoinformatics, a brief descrip-
tion of its basic principles will be given below. 

THERMODYNAMIC ASPECTS OF QSAR 

 The ligand – receptor interaction can be modeled as a 
reversible bimolecular reaction and represented as 
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 The equilibrium constants of association KA and dissocia-
tion KD are represented by the ratios of the rate constants and 
involving reactants and product concentrations.  
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 For ligand – receptor interactions the values for KA vary 
between 102 and 1012, and for KD – between 10-2 and 10-12. 
At equilibrium the constants are related to the standard free 
energy of binding G

0: 

DDA KRTKRTKRTG lnlnln 10
===        (1) 

 Considering R = 8.314 Jmol-1K-1 and absolute tempera-
ture in Kelvin T between 298 (25°C) and 310 (37°C), for 
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G
0 are obtained values between -10 and -80 kJmol-1 (An-

drews et al., 1984; Böhm and Klebe, 1996; Babine and 
Bender, 1997). G

0
 is composed of an enthalpic H

0 and 
entropic T S

0 contribution: 

 
000 STHG =          (2) 

 Combining equations (1) and (2) gives equation (3) 
known as the integrated form of the van’t Hoff equation 
when H

0 and S
0 are not temperature dependent.  
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 Equation (3) represents a linear relationship between 
lnKA and 1/T with slope = ± H

0/R and y-intercept = S
0
/R. 

The sign of the slope depends on the heat effect of the reac-
tion, being positive for exothermic and negative for endo-
thermic ones. It is common practice in the thermodynamic 
analysis of pharmacological interactions to measure KA or KD 
at several different temperatures, then construct a van’t Hoff 
plot and determine H

0 and S
0
. Their sign and value de-

pends on the type of interactions involved in the formation of 
ligand – receptor complex. Hydrophobic interactions are 
associated with entropic changes, while electrostatic attrac-
tions reflect the enthalpic contribution.  

 Changes in free energy, enthalpy, entropy and other 
thermodynamic parameters are related for a particular reac-
tion. When multiple reactions are considered, apparent rela-
tionship between some of the thermodynamic parameters 
may appear. These relationships are termed “extrathermody-
namic” because they are not derived from the main princi-
ples and, hence, lie outside the domain of traditional thermo-
dynamics (Raffa, 2002). When these extrathermodynamic 
relationships are applied to a series of structurally related 
compounds, they can yield insight into their common 
mechanism of action. Typical extrathermodynamic relation-
ships are enthalpy – entropy compensation and linear free 
energy relationships. 

 Enthalpy – entropy compensation is the empirical obser-
vation that highly exothermic interactions tend to have large 
entropy changes, whereas more thermoneutral interactions 
tend to have less unfavorable entropy changes (Calderone 
and Williams, 2001). In the ligand – receptor interaction, 
changes in the enthalpy are considered as a measure of the 
strength of the interaction, while changes in the entropy ac-
count for the disorder in the system. Consider a receptor 
which consists of several proximal binding sites (Calderone 
and Williams, 2001). Each site binds a distinct ligand with a 
certain affinity. If the ligands are linked together and bind 
the receptor more favorably (positive cooperativity), then the 
increased free energy of binding will result in a structural 
tightening of the ligand – receptor complex. The tighter 
binding (increased enthalpy) leads to a restriction of relative 
motion of the linked ligands (decreased entropy).  

 In 1937 Hammett found that the effects of substituents on 
the reaction rate could be assessed quantitatively by parame-
ters describing the chemical structure of a series of structur-
ally related compounds (Hammett, 1937). He defined this 
dependence as a linear free energy relationship (LFER): 
changes in Gibbs energy relates linearly to the logarithm of a 

reaction rate constant or equilibrium constant. Hansch and 
colleagues used the Hammett constants  and logP to find a 
correlation between the structure of a series of structurally 
related compounds and their biological activity (Hansch et 
al., 1962). Then, for the first time QSAR was defined as a 
natural extension of the LFER approach. Subsequently, 
QSAR has become a widely used ligand – based drug design 
approach. The extremely wide range of QSAR models, pub-
lished in the literature, is due to the great variety of molecu-
lar descriptors now available. According to a compilation by 
Todeshini, the number of QSAR descriptors exceeds 1600 
(Todeshini and Consonni, 2000).  

A UNIVERSAL ADDITIVE METHOD FOR MODEL-

ING OF PEPTIDE – PROTEIN INTERACTIONS 

 The method we used in our studies was called “additive”, 
because it is based on the additivity concept, developed by 
Free and Wilson, whereby each substituent makes an addi-
tive and constant contribution to the biological activity re-
gardless of substituent variation in the rest of the molecule.  

Biological activity  = μ+ij

ij

ij XG  

 In this equation, μ is the overall average of biological 
activity values and Gij is the activity contributions of the 
substituent Xi in position j (Xij = 1 if the substituent Xi is in 
position j; otherwise Xij = 0) (Free and Wilson, 1964). The 
values of the individual group contributions are calculated by 
multiple linear regression (MLR). Other models based on the 
additivity concept are alternative modifications of the Free-
Wilson model. The Fujita-Ban modification is a simple lin-
ear transformation of the Free-Wilson model, where μ is the 
activity of the unsubstituted compound predicted by the 
least-squares method (Fujita and Ban, 1971). In Cam-
marata’s model (Cammarata and Yau, 1970) μ is the experi-
mental activity of the unsubstituted compound (all Xij = H). 
The models based on the additivity concept are simple to 
perform and easy to interpret. Because of that they have 
found wide application in molecular design (Bindal et al., 
1982; Gombar, 1986; Nisato et al., 1987; Dalpiaz et al., 
1997; Tmej et al., 1998; Tomic et al., 2000; Terada and 
Nanya, 2000). 

 We extended the classical Free-Wilson model with cross 
terms accounting for possible interactions between the amino 
acids side chains (Doytchinova et al., 2002). Thus, the bind-
ing affinity of a nonamer expressed in p-units (negative 
decimal logarithm of IC50 values) could be presented by eqn. 
4:  

pIC50 = const + Pi
i=1

9

+ Pi,i+1
i=1

8

+ Pi,i+2
i=1

7

+ Pi,i+3
i=1

6

+ Pi,i+4
i=1

5

+

Pi,i+5
i=1

4

+ Pi,i+6
i=1

3

+ Pi,i+7
i=1

2

+ Pi,i+8

             (4)  

where the const accounts, at least nominally, for the peptide 

backbone contribution, 
=

9

1i

iP  is the sum of amino acids 
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contributions at each position, 
=

+

8

1
1,

i

iiP  - the sum of cross 

terms between adjacent amino acids, 
=

+

7

1
2,

i

iiP  - the sum of 

cross terms between every second amino acids, 
=

+

6

1
3,

i

iiP  - 

the sum of cross terms between every third amino acids, and 
so on. As the cross terms account for possible interactions 
between amino acids, the contributions of the last six terms 
are negligibly small and the binding affinity of a peptide will 
depend significantly on the contributions of the amino acids 
at each position and the cross terms between the adjacent and 
every second amino acids: 
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 Our experience showed that this model describes well the 
peptide – protein interaction and gives good predictions 
when the number of peptides in the training set is above 200. 
For smaller set, the cross terms could be neglected and eqn. 
(5) is converted to the simpler eqn. (6): 

  
=

+=
9

1
50

i

iPconstpIC          (6) 

 Each peptide sequence from the training set of n peptides 
is transformed into a string of 0 and 1. A term is equal to 1 
when a certain amino acid at a certain position or a certain 
interaction between two side-chains exists, otherwise it is 0. 
Thus, in the case of nonamers, a system of n equations with 
6180 independent variables is generated. One hundred and 
eighty variables account for the amino acids contributions 
(20 aa  9 positions), 3200 - for the adjacent cross terms, or 
1-2 interactions (20  20  8) and 2800 - for the every sec-
ond cross terms, or 1-3 interactions (20  20  7). Variables 
containing only 0s are omitted. As a dependent variable is 
used IC50, BL50, class affiliation, etc. The system is solved by 
the method of partial least squares (PLS). 

 PLS is a so-called projection method. These methods 
handle data matrices with more variables than observations 
very well, and the data can be both noisy and highly collin-
ear. In this situation, conventional statistical methods like 
multiple regression produce a formula that fits the training 
data but is unreliable for prediction. PLS forms new x vari-
ables, named principal components (PC), as linear combina-
tions of the old ones, and then uses them as predictors of the 
biological activity (Wold, 1995). 

 In our studies we used PLS methods implemented in 
SYBYL (Tripos Inc.) and SIMCA (Umetrics Ltd.). The op-
timal number of components (PC) was found by “leave-one-
out” cross-validation. The cross-validation (CV) is a practi-
cal and reliable method for testing the predictive power of 
the models. It has become a standard in PLS analysis and is 
incorporated in all available PLS software (Wold, 1995). In 
principle, CV is performed by dividing the data into a num-
ber of groups, developing a number of parallel models from 

the reduced data with one of the groups omitted, and then 
predicting the biological activities of the excluded com-
pounds. When the number of the groups omitted is equal to 
the number of the compounds in the set, the procedure is 
named “leave-one-out” (LOO). The predictive power of the 
models was assessed by the cross-validated coefficient q

2, 
the standard error of prediction (SEP), and the residuals be-
tween the experimental and predicted binding affinity:  

1

12

=

=

p

PRESS
SEP

SSQ

PRESS
q

 

residual = pIC50exp – pIC50pred 

where PRESS is the predictive sum of squares 

(
=

n

1i

2
5050 )predpICexppIC( ), SSQ – the sum of 

squares of pIC50exp corrected for the mean 

(
=

n

1i

2
5050 )meanpICexppIC( ), p is the number of the 

peptides omitted, pIC50pred is that predicted by the CV-LOO 
value. The residuals between the experimental and predicted 
pIC50 values were classified into 3 categories: below |0.5|, 
from |0.5| to |1.0| and above |1.0|. A mean |residual| or mean 
absolute error (MAE) was extracted as well. 

 The optimal PC number was used to derive the final non-
cross-validated model. This model was assessed by the ex-
plained variance r2, standard error of estimate (SEE), and F 
ratio. When external test sets were used for assessment of the 
predictive ability of the models, the parameter r

2
pred was 

used: 

SSQ

PRESS
r pred = 12

 

where PRESS and SSQ are calculated for the test set, 
pIC50mean is a mean of experimental pIC50 over the training 
and test sets. 

MODELING OF PROTEASOME CLEAVAGE 

 In order to develop additive models for proteosome 
cleavage prediction (Doytchinova and Flower, 2006), a train-
ing set of 489 naturally processed T-cell epitopes (nonamer 
peptides) associated with HLA-A and HLA-B molecules was 
collected from our in-house database AntiJen (http://www. 
jenner.ac.uk/AntiJen) (Blythe et al., 2002; McSparron et al., 
2003; Toseland et al., 2005). A test set of 231 peptides, as 
used by Saxova et al., (Saxova et al., 2003) to compare the 
performance of the available methods for proteosome cleav-
age prediction, was used in our study for external validation. 
All common T-cell epitopes between the two sets were first 
excluded from the training set.  

 The epitopes were presented together with the four flank-
ing amino acids before the N-terminus and the five flanking 
residues after the C terminus (Fig. 2). Further, these parent 
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18aa peptides were broken into a set of overlapping decam-
ers. The peptide which contained the C terminus of the epi-
tope at position p9 of the decamer was considered as posi-
tive, i. e. the cleavage site was present. The rest of the over-
lapped peptides in each set was considered as negative 
(cleavage site not present). Thus, the initial training set of 
489 epitopes generated 4370 decamers, 489 peptides of them 
had positive cleavages and 3881 peptides were negative.  

 As the peptides from the test set had a length of 8-12 
residues, some of the parent peptides had lengths different 
from 18 amino acids. Four parent peptides with no flanking 
residues after the C terminus were excluded from the test set, 
since it was not possible to locate the cleavage site. Thereby, 
the final test set included 227 epitopes. They generated 2100 
decamers: 227 peptides were positive and 1873 peptides 
were negative.  

 For a set of decamers, the additive method generates a 
matrix with 200 (20 x 10) columns and a number of rows 
equal to the number of peptides. A column containing the 
dependent variable (cleavage vs. non-cleavage) is added and 
the matrix is solved by PLS as implemented in SYBYL 6.9. 
Models including different positions next to the cleavage site 
were generated in order to assess the importance of the 
flanking residues. The prediction rate of T-cell epitopes vs. 
non-T-cell epitopes was measured using Receiver Operating 
Characteristic (ROC) curves (Bradley, 1997). Two variables 
sensitivity (true T-cell epitopes/total T-cell epitopes) and 1-
specificity (false T-cell epitopes/total non-T-cell epitopes) 
were calculated at different cutoffs. The area under the curve 
(AROC) is a quantitative measure of the predictive ability and 
varies from 0.5 for a random prediction to 1.0 for a perfect 
prediction. The predictive ability of the models was assessed 
by LOO-CV on the training set and by external validation on 
the test set.  

 Additive models which included different positions be-
fore and after the cleavage site were used to assess the im-

portance of flanking amino acids around the C-terminus for 
accurate proteosome cleavage prediction. Peptide positions 
were denoted as is shown in Fig. (2). Cross terms were omit-
ted as previous studies indicated that the contributions of the 
positions next to the cleavage site are additive (Altuvia and 
Margalit, 2000). The ability of the models to discriminate T-
cell epitopes from non-T-cell epitopes was assessed by ROC-
statistics on the training and test sets. The overall perform-
ance of the models was very good (all AROC > 0.740, data not 
shown). Models containing amino acids from both sides of 
the C-terminus predict better than models which only include 
flanking positions before the cleavage site. The best per-
forming models for the test set are models p8p9p9’p8’ (AROC 
= 0.761) and p9p9’ (AROC = 0.759) (Table 1). 

 Our results indicated that positions p9 and p9’ are the 
most significant for the cleavage site. In accordance with 
these findings, the models derived in the present study show 
that p8, p9, p9’ and p8’ are the most influential positions. 
Cleavage appears after Val, Ile, Tyr, Leu, Lys, Arg, Ala, Phe 
and Met and/or before Gln, Cys, Glu, Gly, Lys, Arg, Asp, 
Asn, His and Thr. Arg and Lys make positive contributions 
at both positions, while Pro, Ser ad Trp contribute negatively 
at both. The preference for hydrophobic and basic amino 
acids at the C-termini in our models is compatible with pre-
viously reported results based on degradation experiments 
(Niedermann et al., 1996; Kuttler et al., 2000; Altuvia and 
Margalit, 2000). These preferences agree with the well estab-
lished requirements for binding to many MHC class I alleles 
(Rammensee et al., 1995). Preferences for small (Cys, Gly), 
polar (Gln, Asn, Thr), positively (Lys, Arg, His) and nega-
tively charged (Glu, Asp) amino acids at p9’ are also found 
in our models. These results, which exclude negatively 
charged amino acids, are compatible with previously re-
ported preferences at the p9’ position (Niedermann et al., 
1996; Kuttler et al., 2000; Altuvia and Margalit, 2000). Ad-
ditionally, the negatively charged aspartic and glutamic acids 
at p9’ position have positive contributions. Among the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). Cleavage site presentation. Peptide positions are given in bold. The positions before the N terminus are denoted as “nn”, while the 
positions after the C terminus – as “pn’”. The vertical line shows the cleavage site. When the C terminus of the epitope is located at the mid-
dle (position p9 of the decamer), the peptide is considered as positive and takes 1, i. e. cleavage site present. The rest of the overlapped pep-
tides are considered as negative and take 0s (cleavage site not present).  
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amino acids occupying position p8, Glu, His, Cys, Lys and 
Trp contribute positively and Asp, Tyr, Arg, Phe, Leu and 
Gln make negative contributions. At the p8’ position, Gly, 
Arg, Glu, Asn, Thr and Ser have positive coefficients, while 
Tyr, Phe, His, Ile, Met and Trp contribute negatively.  

MODELING OF TAP BINDING 

 We used the additive method to develop a TAP binding 
prediction model (Doytchinova et al., 2004a). We also 
evaluated how well this model acts as a pre-selection step in 
predicting MHC binding peptides. To distinguish between 
fully and partially TAP-dependent alleles, two data sets were 
examined. Peptides binding to HLA-A*0201 were selected 
as representatives of HLA alleles exhibiting partial TAP-
dependence and peptides binding to HLA-A*0301 repre-
sented fully TAP-dependent HLA alleles. 

 A set of 163 polyAlanine nonameric peptides was used as 
a training set. Originally, using the peptide AAASAAAAY 
as the parent peptide, a set was prepared which included all 

natural amino acids except cysteine substituted at each posi-
tion (Daniel et al., 1998). The binding affinities were pre-
sented as as –logIC50 values (pIC50). This set was used to 
develop an additive model for TAP binding (Table 2).  

 Two principal components (PC) explain 99.9% of the 
variance in the set. The most positive contributions to bind-
ing belongs to Phe at p9, followed by Phe, Tyr and Trp at p3. 
The most negative value corresponds to Ser at p9, followed 
by Pro at p2, Asp and Gly at p9. A TAP binding motif was 
defined: amino acids that increase TAP binding affinity more 
than 5 fold (0.699 log unit) were identified as preferred; 
amino acids that decrease affinity more than 10 fold (1 log 
unit) were identified as deleterious. No amino acid is 
strongly preferred at p1, but Glu, Asp and Pro are deleteri-
ous. Trp has the highest positive contribution at p2 and Pro 
and Asp the most negative one. Two groups of amino acids 
make significant contributions at p3: the first group includes 
Phe, Tyr and Trp (each making an equal contribution of 
1.125 log units) and the second group comprises Ile, Met and 
Val (coefficients of 0.824). Only Asp and Gly are detrimen-

Table 1. Additive Models for Proteasome Cleavage Prediction 

  p9p9’  p8p9p9’p8’ 

 p9 p9' p8 p9 p9’ p8’ 

A 0.023 -0.012 0.003 0.025 -0.014 0.001 

C -0.031 0.053 0.017 -0.032 0.055 0.005 

D -0.064 0.011 -0.043 -0.065 0.012 -0.009 

E -0.075 0.038 0.078 -0.075 0.037 0.029 

F 0.018 -0.029 -0.022 0.019 -0.030 -0.032 

G -0.096 0.035 0.007 -0.097 0.037 0.033 

H -0.049 0.009 0.049 -0.049 0.011 -0.026 

I 0.169 -0.046 -0.005 0.169 -0.045 -0.024 

K 0.061 0.031 0.010 0.060 0.030 0.006 

L 0.100 -0. 043 -0.015 0.096 -0.044 -0.004 

M 0.008 -0.020 0.008 0.008 -0.020 -0.013 

N -0.064 0.011 0.006 -0.065 0.012 0.021 

P -0.109 -0.050 0.007 -0.110 -0.049 -0.009 

Q -0.066 0.056 -0.013 -0.066 0.057 0.002 

R 0.039 0.022 -0.038 0.041 0.022 0.033 

S -0.092 -0.017 -0.007 -0.092 -0.015 0.013 

T -0.067 0.005 -0.001 -0.066 0.003 0.018 

Y 0.134 -0.039 -0.041 0.137 -0.042 -0.044 

W -0.010 -0.011 0.010 -0.009 -0.010 -0.010 

V 0.171 -0.006 -0.008 0.172 -0.007 0.009 

const 0.101 0.104 
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tal at p3. Low value positive and negative contributions are 
characteristic of p4. Trp is the preferred amino acid at p5, 
while Ile is preferred at p6, Pro and Tyr at p7, and Ser, Thr 
and Gly at p8. There are no strongly disfavoured amino acids 
at any of these four positions. P9 is very sensitive to 
changes: Phe and Tyr are favoured, and there are many dis-
favoured amino acids, including Ser, Asp, Gly, Asn, Thr, 
Glu, His, and Ala. 

 Two sets of nonameric peptides were used to test the 
predictive ability of the additive model for TAP affinity (Fig. 
3). Set A consisted of 47 analogs of the peptide ALAK- 
AAAAV (Daniel et al., 1998). Originally, affinities were 
presented as IC50 values relative to the parent peptide 
ALAKAAAAV. Set B included 38 nonamers (Daniel et al., 
1998) with affinities presented as IC50 values relative to the 
reference peptide RRYNASTEL. The binding affinities of 
the test peptides were calculated by the additive model and 
were presented as the logarithm of the relative IC50 value 
(IC50test/IC50reference). The correlation between the predicted 
and experimental logIC50relative (rpred) was used to assess the 
model predictability. Set A has an rpred of 0.717 and set B 
has an rpred of 0.832. The high predictive ability of the TAP 

additive model confirmed the applicability of the additive 
method for TAP binding affinity prediction.  

 To assess the TAP contribution to T-cell epitope selec-
tion the additive scoring function derived in this study was 
applied on a set of 317 A*0201 binders, 239 A*0201 non-
binders, 76 A*0301 binders and 237 A*0301 non-binders. 
Binders were extracted from our in-house database AntiJen 
(Toseland et al., 2005). Non-binders were a gift from Dr. 
Vladimir Brusic. Receiver Operating Characteristic (ROC) 
curves (Bradley, 1997) were used to measure the prediction 
rate of binders vs. non-binders. TAP and HLA (Guan et al., 
2006) additive scoring functions were applied to predict 
binders and non-binders. In both cases HLA scoring func-
tions give better predictions than TAP scoring functions 
(Fig. 4). However, TAP scores better for fully TAP-depen- 
dent A*0301 than for partially TAP-dependent A*0201, 
AROC = 0.874 vs. AROC = 0.721. According to the number of 
false and true negatives at different TAP cutoffs, a lower 
TAP cutoff (-logIC50<3.00) is recommended for A*0201 
peptides pre-selection than for A*0301 (-logIC50<5.00). In-
creasing the TAP cutoff drastically increases the number of 
false negatives for A*0201 but does not affect the number of 

Table 2. Additive Model for TAP Affinity Prediction. The Model Constant is 6.223, r
2 

= 0.999, PC = 2 

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

Ala 0.400 -0.030 -0.240 0.094 -0.173 -0.140 -0.097 -0.178 -0.808 

Arg 0.487 0.558 0.347 0.492 0.290 0.527 0.190 -0.016 0.198 

Asn 0.444 -0.533 -0.367 0.140 -0.351 0.448 -0.010 0.109 -1.406 

Asp -1.240 -1.074 -1.145 0.191 -0.062 0.022 -0.634 0.109 -1.809 

Gln -0.683 0.558 -0.237 0.316 0.151 0.381 -0.236 -0.174 -0.471 

Glu -1.349 0.035 -0.668 -0.082 -0.351 0.226 -0.053 -0.174 -1.114 

Gly -0.276 -0.791 -1.103 -0.268 -0.430 0.381 -0.685 0.711 -1.687 

His -0.522 -0.706 0.280 0.492 -0.038 0.184 0.093 -0.192 -0.950 

Ile -0.085 0.336 0.824 0.094 0.415 0.749 0.491 -0.091 -0.251 

Leu -0.351 0.637 0.347 0.094 0.591 0.022 0.424 0.146 -0.304 

Lys 0.186 0.222 0.125 0.395 -0.086 0.381 -0.394 -0.259 -0.068 

Met -0.027 0.491 0.824 0.316 0.415 -0.189 0.491 0.146 -0.439 

Phe -0.648 0.190 1.125 0.492 0.348 -0.029 0.491 -0.091 1.174 

Pro -1.094 -1.945 0.083 0.395 0.591 0.050 0.792 0.234 -0.633 

Ser -0.073 0.433 0.347 -0.272 -0.086 -0.189 -0.685 0.887 -2.352 

Thr -0.243 0.222 0.011 0.094 0.017 -0.172 -0.146 0.711 -1.292 

Trp -0.419 0.859 1.125 0.492 0.892 -0.136 0.269 0.586 0.308 

Tyr -0.546 0.433 1.125 0.395 0.494 -0.293 0.792 0.074 0.762 

Val -0.012 0.558 0.824 0.249 -0.011 -0.117 0.366 0.146 -0.384 

ASCa 9.085 10.611 11.147 5.363 5.792 4.636 7.339 5.034 16.410 

a Absolute sum of contributions.  
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false negatives for A*0301. Thus, a TAP cutoff of 3.00 
eliminates only 24 of the non-binders (10%) for A*0201, 
whereas, at a TAP cutoff of 5.00, 80 A*0301 non-binders 
(33%) are eliminated. Unsurprisingly, TAP pre-selection is 
more efficient for fully TAP-dependent alleles than for par-
tially TAP-dependent alleles.  

  As TAP transport precedes HLA binding, a conflict will 
only arise between positions which are deleterious for TAP 
binding but preferred for HLA binding, but not between TAP 
preferred and HLA deleterious positions. The absolute sum 
of contributions indicated that p1, p2, p3 and p9 exhibit the 
greatest variation in amino acid preference. It is widely as-
sumed that p2 and p9 are the primary anchors and p1 and p3 
are secondary anchors for MHC binding. Most HLA alleles 
prefer peptides with hydrophobic or aromatic amino acids at 
their C-termini; only the A3 binding motif has positively 

charged amino acids (Arg or Lys) here. Phe, Tyr and Trp are 
the preferred amino acids at the C-terminus of TAP binding 
peptides, whereas Arg makes a small positive contribution 
and Lys makes a negligible contribution. Ile, Leu and Val 
exhibit moderate negative values (less than 0.4 log units). 
Ser, Asp, Gly, Asn, Thr and Glu are all detrimental for TAP 
binding and this provides a possible explanation as to why 
few human class I MHC ligands have these amino acids at 
their C-termini. 

 There is a great variety of preferred amino acids at an-
chor p2 in HLA motifs. A2 and A3 supertypes prefer hydro-
phobic amino acids, A24 prefers aromatic, B7 prefers Pro, 
B27 prefers positively charged amino acids and B44 prefers 
negatively charged ones. All these amino acids make posi-
tive contributions to TAP binding, except for Pro and Asp. 
At p2, Pro is a preferred anchor for B7, whereas Asp is pre-

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (3). External validation of the TAP binding model by two test sets. Test set A has rpred = 0.717 (left) and test set B has rpred = 0.832 
(right). 
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Fig. (4). ROC statistics of the additive models for TAP, HLA-A*0201 ( )  HLA-A*0301 ( ) binding affinity prediction. Not For Distribution
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ferred for B44. These are the only points of conflict between 
TAP and HLA binding preferences. The deleterious effects 
of Pro and Asp suggest that ligands with Pro and Asp at p2 
are unlikely to be transported into the lumen of the ER via a 
TAP-dependent mechanism. Fortunately, these ligands often 
bear Phe and Tyr at their C-termini, which are strongly pre-
ferred by TAP, indicating a potential compensating effect for 
Pro and Asp.  

 P1 is the next most sensitive position for TAP binding 
after p9. It is thought to be a secondary anchor for MHC 
binding and the side chain occupies pocket A (Ruppert et al., 
1993). However, the TAP_19 model (AROC = 0.563) suggest 
this position is not overly important for TAP transport. Addi-
tionally, the highest negatively contributing amino acids for 
TAP affinity, Glu and Asp, are common at p1 in many HLA 
ligands (Rammensee et al., 1995).  

 Phe, Tyr and Trp at p3 have the highest positive contribu-
tion to TAP binding after Phe9, whereas Asp and Gly con-
tribute negatively. The side chain at p3 occupies pocket D in 
the MHC binding groove and it is thought to be an important 
secondary anchor (Garboczi et al., 1996). A wide range of 
amino acids, including Asp and Gly, are available at this 
position in different MHC ligands, which point to the mod-
erate importance of this position for TAP transport. 

 Weak amino acid contributions to TAP binding were 
seen at p4, p5, p6, p7 and p8. Similar results have been 
found by others (Gubler et al., 1998; Lankat-Buttgereit and 
Tampé, 1999; Peters et al., 2003). The primary interaction of 
T-cell receptors (TCR) is with residues 5 to 8 of a class I 
MHC binding nonapeptide (Garboczi et al., 1996). Thus, 
antigen recognition by a TCR is in the region of the peptide 
where TAP exerts minimal selection. Moreover, TAP trans-
port is only one part of the complexity inherent in the emerg-
ing picture of class I presentation (Chen and Jondal, 2004; 
Lautscham et al., 2003).  

MODELING OF MHC CLASS I BINDING 

 The major part of the class I MHC molecule is formed by 
a transmembrane heavy chain of 44 kDa folded into 3 do-

mains 1, 2 and 3 (Krensky and Clayberger, 1996). 1 and 
2 form the peptide binding domain, containing the peptide 

binding groove and the site of interaction with T cell recep-
tors (Jones, 1997). Although not all nine amino acids interact 
strongly with the binding site, all of them make contact with 
it (Madden et al., 1993). X-ray data indicate that the MHC 
peptide-binding site has a 30Å long solvent accessible sur-
face (Madden, 1995), within which six pockets (A to F) have 
been described (Fig. 5). Certain pockets are non polar and 
make hydrophobic contacts. Others contain polar atoms and 
could hydrogen bond to bound peptides. Six peptide residues 
fall into these pockets: they are defined as primary (p2 and 
p9) and secondary (p1, p3, p6 and p7) anchor positions. The 
remaining three amino acids (p4, p5 and p8) are solvent ac-
cessible and can interact with T cell receptors. They are able 
to affect MHC binding affinity in several ways: through di-
rect non-bonded interactions with the MHC, by causing con-
formational changes in anchor residues, and by altering dy-
namic properties of the whole peptide. 

 Sequence analysis has shown the peptide domains 1 and 
2 to be polymorphic. Twenty residues are the most variable 

(Parham et al., 1988). Most of these residues contact the 
peptide, giving MHCs a broad specificity and allowing them 
to bind a wide variety of peptides (Saper et al., 1991). Sette 
and Sidney grouped class I alleles into superfamilies based 
on the overlap between their binding motifs (supermotifs) 
(Sette and Sidney, 1998). Four superfamilies are known: 
HLA-A2 (Altfeld et al., 2001), HLA-A3 (Kawashima et al., 
1999), HLA-B7 (Coyle and Gutierrez-Ramos, 2001) and 
HLA-B44 (Sette and Sidney, 1998). Supermotif identifica-
tion has direct practical implications in epitope-based vac-
cine development for the prevention of infectious diseases 
and cancer. Epitope identification is the initial step in the 
design of epitope based vaccine, and often begins with an in 
silico motif search. 

 We review here the application of QSAR methods to the 
definition of A2 and A3 supermotifs. Initially, we applied 
QSAR methods to peptides binding to the HLA-A*0201 
allele (Doytchinova et al., 2002) and then applied them to 
peptides binding to the HLA-A2 and A3 supertypes. We thus 

 

 

 

 

 

 

 

 

 

Fig. (5). Peptide binding site on HLA-A*0201 (Madden et al., 1993). Alfa-helices are given in dark grey, beta-sheets – in white. The binding 
site has six pockets denoted from A to F. Peptide LLFGYPVYV (light grey) is shown inside the cleft. 
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defined extended A2- and A3-supermotifs (Doytchinova and 
Flower, 2003b; Guan et al., 2003a). The HLA-A2 family is 
the largest and most diverse allele family at the HLA-A lo-
cus, consisting of 55 alleles and is common in all ethnic 
groups (Sidney et al., 1996a; Ellis et al., 2000; Sette et al., 
2001). Within the HLA-A2 family, the most frequent alleles 
are A*0201, A*0202, A*0203, A*0206 and A*6802. These 
alleles differ by 1 to 7 amino acids (Schönbach et al., 2000), 
and these sequence differences alter the peptide binding 
selectivity of the different A2 alleles. The HLA-A3 super- 
type covers 44% of the human population and includes 5 
main alleles: A*0301, A*1101, A*3101, A*3301 and 
A*6801 (Sidney et al., 1996a).  

 Applying the additive method, two types of models were 
created: one based solely on the amino-acid contributions 
(amino acids model: AAM) and another based on both 
amino-acid contributions and amino-acid interactions (amino 
acids and interactions models: AAIM) (Doytchinova and 
Flower, 2003b; Guan et al., 2003a). According to the q2 val-

ues the AAMs are more predictive than the AAIMs. This is 
because certain interactions occur only once. In cross-
validation, they appear as missing terms in the equation used 
for affinity prediction. Prediction error is proportional to the 
number of missing terms. Missing terms in AAMs are less 
frequent and so their prediction rate is higher. In contrast, r2 
was slightly lower for the single amino acid models than for 
the AAIM. The decrease in r

2 shows that the amino acid 
side-chain interactions are important for the explanation of 
variance and should be considered in the modelling of the 
binding process. The statistical parameters for these models 
are collected in Table 3. 

 Amino acids with contributions greater than 0.2 were 
considered as preferred for a particular allele at the specific 
position and those with contributions lower than –0.2 were 
considered as deleterious. Residues identified as preferred 
for two or more A2/A3-alleles without being deleterious for 
others were considered as preferred. Residues identified as 
deleterious for two or more alleles were considered as delete-

Table 3. Statistics of the Additive Models 

Model n q
2
 PC SEP r

2
 SEE F MAE

c
 

HLA-A2 Superfamily 

A*0201 

AAMa 

AAIMb 

 

335 

340 

 

0.377 

0.337 

 

6 

5 

 

0.694 

0.726 

 

0.731 

0.898 

 

0.456 

0.285 

 

148.66 

588.88 

 

0.546 

0.573 

A*0202 

AAM 

AAIM 

 

69 

68 

 

0.317 

0.283 

 

9 

2 

 

0.606 

0.621 

 

0.943 

0.748 

 

0.193 

0.368 

 

109.10 

96.65 

 

0.546 

0.511 

A*0203 

AAM 

AAIM 

 

62 

 

0.327 

<0.300 

 

6 

 

0.841 

 

0.963 

 

0.197 

 

239.30 

 

0.652 

A*0206 

AAM 

AAIM 

 

57 

 

0.475 

<0.300 

 

6 

 

0.576 

 

0.989 

 

0.085 

 

728.52 

 

0.443 

A*6802 

AAM 

AAIM 

 

46 

 

0.500 

<0.300 

 

7 

 

0.647 

 

0.983 

 

0.119 

 

313.30 

 

0.517 

HLA-A3 Superfamily 

A*0301 

AAM 

AAIM 

 

72 

70 

 

0.436 

0.305 

 

6 

4 

 

0.680 

0.699 

 

0.959 

0.972 

 

0.181 

0.136 

 

246.90 

557.37 

 

0.504 

0.527 

A*1101 

AAM 

AAIM 

 

62 

62 

 

0.458 

0.428 

 

2 

3 

 

0.572 

0.593 

 

0.829 

0.977 

 

0.321 

0.119 

 

143.00 

821.10 

 

0.507 

0.467 

A*3101 

AAM 

AAIM 

 

30 

31 

 

0.482 

0.453 

 

3 

6 

 

0.710 

0.727 

 

0.892 

0.990 

 

0.325 

0.098 

 

71.36 

399.96 

 

0.502 

0.602 

A*6801 

AAM 

AAIM 

 

38 

37 

 

0.531 

0.370 

 

4 

4 

 

0.594 

0.664 

 

0.959 

0.974 

 

0.175 

0.136 

 

194.85 

297.48 

 

0.418 

0.485 

aAAM: amino acids model; bAAIM: amino acids and interactions model; cmean absolute error. 
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rious in the common motif. The supermotifs defined by the 
additive method are given in Fig. (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). A2-supermotif: a) based on A*0201, A*0202, A*0203, 
A*0206 and A*6802 alleles; b) based on A*0201, A*0202, A*0203 
and A*0206 alleles. c) A3-supermotif. 

A2 Supermotif 

 P2 and C-terminal (p9) are considered as primary anchor 
positions. Our models indicated significant differences in the 
amino acid preferences at p2 for A2 alleles. Hydrophobic 
aliphatic residues such as Leu, Met and Val have well known 
preferences for this position (Falk et al., 1991; Madden et 
al., 1993; Ruppert et al., 1993; Parker et al., 1994). How-
ever, our models show that Leu and Met are preferred amino 
acids only for A*0201, A*0202 and A*0203. Leu is delete-
rious for A*6802 and Met is deleterious for A*0206 and 
A*6802. Val and Thr are preferred for A*6802. Sidney and 
colleagues also reveal similar differences in p2 specificities 
although not so strong as in the present study (Sidney et al., 
2001). Comparing the residues forming the pocket B in the 
different alleles four differences are evident (Schönbach et 
al., 2000). Three of them (Glu63, Lys66 and His70) are dis-
posed at the pocket rim and one (Phe9) at the inner wall. The 
Phe9 Tyr9 substitution makes the pocket shallower and long 
side chains, such as Leu and Met, are no longer accommo-
dated here. Molecular modeling studies hypothesize a possi-
ble conformational shift of the aromatic ring of Tyr9 into the 
cavity (Sudo 

et al., 1995). This conformational change would 
narrow the size of the B pocket and weaken the entirely hy-
drophobic state of this pocket. The preferred Val and Thr for 
A*6802 allele, being deleterious or negative for the other 

A2-sypertype molecules, denote another point of discrep-
ancy between A*6802 and the remaining A2 alleles. Com-
parison of the residues forming pocket B shows identity be-
tween A*6802 and A*1110, A*2502, A*2613, A*6604, 
A*6601, A*6602, A*3403, A*3404, A*3402 alleles. None 
of them except for A*6802 was classified as A2-like allele. 
At the C-terminal there is a good agreement between the 
preferences of different alleles. Val is the favored amino acid 
at this position, Ala is deleterious. Pocket F appears to be the 
most conserved pocket in the HLA binding cleft (Madden, 
1995). The side chain of Tyr116 occupies the end of the 
pocket F and is uncharged, so that the binding site is com-
plementary to small hydrophobic side chains (Saper 

et al., 
1991; Madden et al., 1993). 

 P1, p3, p5, p6 and p7 are secondary anchor positions 
(Ruppert 

et al., 1993; Madden, 1995). Phe is the only one 
preferred amino acid for p1 in the common motif. Lys is 
preferred for all alleles except for A*6802. For the last allele 
Lys is apparently deleterious. The main differences in the 
amino acids sequences forming this pocket are residues 63 
and 66. Glu63 and Lys66 are substituted for Asn63 and Asn66 
in A*6802 allele (Schönbach et al., 2000). Obviously, the 
negatively charged Glu63 favored the presence of positively 
charged Lys at p1, while the neutral Asn63 is not electrostati-
cally complementary to Lys. Ile is the only preferred amino 
acid at p3 and Thr is the common deleterious one. Leu and 
Val are preferred for A*02 alleles but is deleterious for 
A*6802. P3 side chains of bound peptides fall into pocket D 
which is a hydrophobic cavity (Bjorkman 

et al., 1987). There 
is only one difference in the sequences forming this pocket. 
Leu156 in A*0201 and A*0206 is substituted for Trp in 
A*0202, A*0203 and A*6802 making a bulky ridge across 
the center of the cleft. Leu was found to be a preferred resi-
due at p5 for affinity to A2-supertype molecules except for 
A*6802 where it is negative but not deleterious. Trp is dele-
terious for three of the five MHC molecules. Ile and Leu are 
preferred at p6 and Ser is deleterious. The side chain of p6 
falls into pocket C. The most dramatic difference between 
A*6802 and A*02 alleles concerns this pocket. A deep nega-
tively charged pocket at A*6802 is formed by the substitu-
tion of Asp for His at position 74 and Gln for His at position 
70. This pocket seems suited to bind polar atoms, especially 
a positively charged side-chains or N-terminus (Lys) (Garrett 

et al., 1989). Unfortunately, we could not find any published 
peptide that had Lys at p6 which had been tested for affinity 
to A*6802. For affinity to A2-supertype molecules Ile is 
preferred at p7. The side chain at p7 falls into pocket E. Two 
thirds of the surface area in this pocket is hydrophobic, but 
Arg97 provides a large polar patch on one side of the pocket 
(Saper 

et al., 1991). Pocket E can accommodate a variety of 
complementary peptide side chains, but an incompatible side 
chain need not prevent complex formation (Madden, 1995). 

 P4 and p8 are solvent-exposed and may form contacts 
with the TCR (Madden, 1995). Gly is preferred here. Thr is 
preferred or positive for the A2-supertype alleles except for 
A*6802. Phe is a preferred common residue at p8 and Asp is 
deleterious for four of the five A2 molecules. The A2 su-
permotif is presented in Fig. (2a).  

 Certain discrepancies between A*6802 and A*02 mole-
cules concerning the amino acids preferences at p1-p9 were 
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seen in the present study. These discrepancies throw doubt 
on whether the A*6802 allele belongs to the A2-supertype. 
The sequence comparison showed that there are only one or 
two differences in the residues forming the six pockets of 
A*0201, A*0202, A*0203 and A*0206 molecules. The 
number of these differences between A*6802 and A*02 
molecules is seven residues. Five of them concern pockets 
A, B and C and are so substantial that they alter the amino 
acids preferences at the primary anchor p2 and the secondary 
anchors p1 and p6. The preferred Val and Thr for p2 brings 
the A*6802 allele closer to the A3-supertype (Sidney 

et al., 
1996b) rather than to the A2-one. But the A3 supermotif 
requires positively charged residues, such as Arg and Lys, at 
the C-terminus (Sidney 

et al., 1996b), which is not true in the 
case of the A*6802 allele. Obviously, A*6802 is a interme-
diate allele standing between A2 and A3 supertypes: in an-
chor p2 it is closer to A3 and in anchor p9 it is nearer to A2. 
Excluding A*6802 allele, the redefinition of the preferred 
and deleterious amino acids expands the A2-supermotif (Fig. 
2b). The expansion concerns all positions and especially the 
anchor p2. One to three new amino acids are added to each 
position’s preferred and deleterious amino acids. 

A3 Supermotif 

 P2 and p9 are generally accepted as primary anchors for 
the A3 superfamily (Garrett et al., 1989; Matsamura et al., 
1992; Falk and R tzschke, 1993). The peptide side chain at 
p2 falls into pocket B and the C-terminal is buried in pocket 
F (Saper and Bjorkman, 1991; Vasmatzis et al., 1996). Pep-
tides usually have a positively charged residue Arg or Lys at 
p9 and a variety of hydrophobic residues at p2. A peptide 
binding motif for the HLA-A3 superfamily has been defined 
previously by Sidney and colleagues (Sidney et al., 1996b) 
and Rammensee and colleagues (Rammensee et al., 1995). 
The supermotif defined in our studies, while in good agree-
ment with previous supermotifs, is more extensive, covering 
all the nine positions that contact the MHC molecule (Guan 
et al., 2003a). 

 P1 is a secondary anchor position. According to the addi-
tive method Ser and Met are preferred here. Despite the wide 
variation in preferences at p2, Ile and Thr were found to be 
preferred for two of the alleles without being deleterious for 
the other two. The wide variation for p2 is explained by the 
polymorphism of residues forming pocket B. Phe9 in A*0301 
is substituted to Tyr9 in A*6801 and A*1101, and to Thr9 in 
A*3101 (Schönbach et al., 2000). The hydroxyl group of 
Tyr9 points towards the inside of the pocket and prevents 
larger amino acids from reaching the bottom of the pocket 
(Sudo et al., 1995). Because of this, larger residues like Leu 
are deleterious for A*6801 and A*1101 but are preferred for 
A*0301. The change from Glu63 to Asn63 in A*6801 and 
A*1101 also changes the conformation of the pocket and 
stops large amino acids from binding (Vasmatzis et al., 
1996). A previous study of pocket B revealed Val67 was re-
oriented in A*6801 and affected amino acid selection (Guo 
et al., 1993). P3 prefers the hydrophobic residue Phe. Sidney 
and co-workers (Sidney et al., 1996b) found that peptides 
with aromatic residue, like Tyr, Phe and Trp, had a 31 fold 
increase in binding affinity to A*0301. Phe, Arg and Gln are 
favoured at p4. No amino acid is favoured at p5. Ser, Gly 
and His are disfavoured here. This position as well as p6 are 

not particularly important in determining the affinity of pep-
tide binding but may participate in T cell recognition. Ser is 
well accommodated at p6. P7 is another secondary anchor 
position (Rammensee et al., 1995). Hydrophobic residues are 
preferred here. Phe and Ile are strongly preferred by A*0301 
and A*1101. Peptide binding studies showed either p3 or p7, 
together with residues at p2 and p9, induced stable binding 
of the peptide (Sidney et al., 1996b). Arg, Tyr and Leu were 
favoured at p8, while Ser, Lys and Glu were deleterious. 
Positively charged amino acid Arg is the common preferred 
amino acid at p9. A*6801 and A*3101 preferred Arg, 
A*1101 favoured the smaller residue Lys, while A*0301 
accepted both. Tyr was deleterious at p9, possibly because 
its aromatic ring was too large for the pocket.  

Design of Superbinders 

 Working solely with peptide data from the literature has a 
number of drawbacks and weaknesses: reported peptides are 
highly biased in terms of their position-dependent amino 
acid composition, often favouring hydrophobic sequences. 
This arises, in part, from pre-selection processes that result 
in self-reinforcement. Binding motifs are often used to re-
duce the experimental burden of epitope identification. Very 
sparse sequence patterns are matched and the corresponding 
subset of peptides tested, with an enormous resulting reduc-
tion in sequence diversity. This bias is more prominent at the 
anchor positions, which usually have highly restricted sets of 
amino acid types. In addition, when working solely with 
literature data it is not possible to test the predicted binding 
affinities of newly-designed peptides. 

 In one of our studies, we determined the binding affini-
ties of a set of 90 nonamer peptides to the MHC class I allele 
HLA-A*0201 (Doytchinova et al., 2004b) using an in-house 
FACS-based MHC stabilization assay (Lopes et al., 2003). A 
good correlation was found between the literature radiola-
beled competition assay IC50 values and the BL50 values 
from our experiments. Using our BL50 values, we derived an 
additive QSAR model for peptide interaction with HLA-
A*0201. The model was applied to design new A2-binding 
peptides. For this purpose we selected the preferred amino 
acids at each position and made combinations of them. For 
some of the positions - 1, 2, 3, 4, 5 and 9 - there were pep-
tides which were obviously strongly preferred, but for other 
positions - 6, 7 and 8 - a wide range of amino acids were 
preferred more or less equally. We selected Leu for p2 and 
Val for p9 as anchors. For p1 Ile and Phe were selected; for 
p3: Phe, Asp and Trp; for p4: Pro and Asp; for p5: Phe, Leu 
and Ile; for p6: Pro, Val and Phe; for p7: Pro, Val and Ile; 
and for p8: Pro, Glu, Thr, Asp and Ser. The combination of 
all preferred amino acids generated 1620 peptides. Their 
affinities were predicted by the additive model and the af-
finities of the top 10 high binders were tested experimen-
tally. The test peptides and their predicted and experimental 
affinities are given in Table 4. Notably, these ten peptides all 
had BL50 values higher than those of the best peptides in the 
training set, with the pre-eminent test peptide having a 
measured binding affinity more than two orders of magni-
tude greater than that of the best binder from the training set. 

 The measured values of the predicted BL50 values were 
highly than our estimates indicating that a possible synergis-
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tic effect may operate between amino acids at different posi-
tions of the peptide. The newly designed superbinders have 
much higher affinities than a simple sum of amino acid con-
tributions from different positions might suggest. This phe-
nomenon is an example of positive enthalpic cooperativity 
(Calderone and Williams, 2001). Generally, where multiple 
weak noncovalent interactions hold a molecular complex 
together, the enthalpy of all the individual intermolecular 
bonding interactions is weakened by extensive intermolecu-
lar motion. The noncovalent complex between a peptide and 
a protein is an excellent example of such a system. As addi-
tional interaction sites generate a more strongly bound com-
plex, intermolecular motion is dampened, with all individual 
interactions becoming more favorable.  
 

Table 4. Superbinders to HLA-A*0201 Designed by the Addi-

tive Method 

Peptides 
pBL50  

Predicted
 

pBL50 

Experimental  

ILDPFPPTV 6.786 8.170 

ILDPIPPTV 6.534 7.296 

ILDPFPVTV 6.755 8.654 

ILDDFPPTV 6.631 7.083 

ILDDLPPTV 6.367 7.144 

ILDDFPVTV 6.600 7.155 

ILDPFPPEV 6.836 7.682 

ILDPFPPPV 6.685 7.442 

ILDPFPITV 6.699 8.139 

ILDPLPPTV 6.522 7.145 

 

 Experimentally, at least for other systems, the trade-off 
between intermolecular motion and enthalpic interactions 
has been shown to account for the way in which entropy and 
enthalpy compensate for each other. Additionally, according 
to the fragment-based drug discovery approach, when two 
fragments binding to different but adjacent sites in an en-
zyme, if joined together in an ideal fashion then the resulting 
affinity of the joined molecule will exceed significantly the 
sum of the fragment affinities (Murray and Verdonk, 2002). 
The reason is that a fragment loses a significant amount of 
rigid body rotational and translational entropy when it forms 
a complex. As the entropy loss has a weak dependence on 
molecular weight, the sum of the fragment affinities will 
include two unfavourable rigid body entropy terms while the 
affinity of the joined molecule will include only one. A pep-
tide binding to a MHC protein is an archetypal example of 
multiple site binding (Fig. 7). The six pockets on the binding 
cleft form a proximal multiple site. The preferred amino ac-
ids for each pocket are the fragments. If they are bound to-
gether in an ideal fashion, the affinity of the joined molecule 
should be substantially greater than the sum of the fragment 
affinities. This approach often is used in the drug discovery 
(Shuker et al., 1996; Hajduk et al., 1997; Rao and White-

sides, 1997; Rao et al., 1998; Maly et al., 2000; Schaschke et 
al., 2001) but for the first time we applied it to design MHC 
superbinders.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (7). Peptide binding groove on MHC protein as a proximal 
multiple binding site. Peptide with non-optimal amino acid binds 
loosely (up), while peptide with optimal amino acids at each posi-
tion binds tightly (down).  

MODELING OF MHC CLASS II BINDING 

 Peptides that bind to MHC class II molecules are usually 
between 10 and 20 residues long, with sizes between 13 and 
16 amino acids being the most frequently observed (Ruden-
sky et al., 1991; Hunt et al., 1992; Chicz et al., 1992; Chicz 
et al., 1993). X-ray data from peptide/MHC class II (Dessen 
et al., 1997) and TCR/peptide/MHC class II complexes 
(Hennecke and Wiley, 2002) indicate that nine amino acids 
are bound in an extended conformation deep in the binding 
groove of HLA-DR4. A dozen hydrogen bonds between 
MHC �-helices and peptide main chain carbonyl and amide 
groups are formed. There is one deep pocket that binds the 
side chain at peptide p1 and there are four shallow pockets 
that bind side chains at p4, p6, p7 and p9. Side chains at p2, 
p3, p5 and p8 project prominently toward the T cell. The 
peptide binding groove of class II molecules is open at both 
ends and this allows a given peptide to bind in many differ-
ent ways. This multiple binding ability of peptides results in 
a lower accuracy for prediction methods compared with 
those for class I peptides (Brusic et al., 1998). 

 We have applied the additive method to a set of 82 pep-
tides of 16 amino acids, or less, which bind to the HLA-
DRB1*0401 molecule (Doytchinova and Flower, 2003a). In 
order to address the problem of multiple potential binding, 
an iterative self-consistent (ISC) PLS-based algorithm was 
used to select the binding set. Eighty percent of the peptides 
formed the training set (66 peptides) and 20% a test set (16 
peptides). Another set of peptides, all longer than 16 amino 
acids, was used as a second test set (14 peptides).  

 The training set of 66 long peptides was presented as a 
set of nonamers accompanied by the pIC50 values of the par-
ent peptide. Only nonamers bearing anchor amino acids 
(Tyr, Phe, Trp, Leu, Ile, Met, Val) at p1 were selected. The 
matrix was solved by PLS. LOO-CV is applied to extract the 
optimum number of components subsequently used to gen-
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erate the non-cross-validated model. The previous model is 
used to predict pIC50 values and a new set is extracted. The 
best predicted nonamers were selected for each peptide, i.e. 
those with the lowest residual between the experimental and 
predicted pIC50. The new set is compared to the previous 
one; if they are the same the final model is obtained. Other-
wise, the selection is repeated. The coefficients in the final 
non-cross-validated model represent the quantitative contri-
butions of each amino acid at each position. The first model 
had poor predictivity: q2 = 0.152, PC = 1, r2 = 0.396, n=185. 
Self-consistency was achieved on the seventh iteration. The 
final model had excellent predictive powers: q2 = 0.716, PC 
= 4, r2 = 0.967.  

 All class II prediction methods should be able to over-
come the so-called multiplicity problem. This arises both 
from the indeterminacy of the problem - we do not know a 
priori which subsequence is the dominant binder - and from 
the possible degeneracy of the binding process it self. Where 
a single dominant binding sequence is absent, the measured 
affinity may be a canonical average of the binding exhibited 
by several subsequences. These phenomena arise from the 
binding groove of class II molecules being open at both 
ends. We may posit that, from a thermodynamic viewpoint, 
the actual nonameric binding subsequence should have the 
highest pIC50, or lowest binding energy, among all the 
nonamers originating from the same long parent peptide. Our 
analysis of the training set indicates however that the pre-
dicted value which is closest to the experimental pIC50 is 
rarely the highest predicted value. We tried three different 
selection rules to deal with this problem when applied to the 
test sets: mean, highest value (max) and a combination of 
both (combi). The last rule selects the mean pIC50 when the 
difference between the highest and lowest predicted pIC50 is 
less than one log unit. Otherwise, it selects the highest pre-
dicted value. For both test sets the highest predictivity is 
given by the combination rule with rpred = 0.593 (test set I) 
and rpred = 0.655 (test set II). The performance of the combi-
nation rule is not surprising, because when an easily distin-
guished good binder is not available in the peptide sequence, 
the binding affinity is a degenerate average of affinities from 
several binding subsequences.  

MHCPred SERVER 

 To facilitate online T-cell epitope prediction, the models 
derived by the additive method were implemented as a web 
server. MHCPred is freely available through the URL 
http://www.jenner.ac.uk/MHCPred (Guan et al., 2003b; 
Guan et al., 2006). The server contains models for 11 human 
MHC class I alleles (HLA-A*0101, HLA-A*0201, HLA-
A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-
A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802 and 
HLA-B*3501), 3 mouse MHC class I alleles (H2-Db, H2-Kb 
and H2-Kk), 3 human MHC class II alleles (DRB1*0101, 
DRB1*0401 and DRB1*0701) and 6 mouse MHC class II 
alleles (I-Ab, I-Ad, I-Ak, I-As, I-Ed and I-Ek). The model for 
TAP binding affinity prediction also was included in the 
server. The server accepts protein sequences in plain text 
format. Two types of models were included in the server: the 
single amino acid models (this only considers the contribu-
tions of the amino acids) and the amino acid with interaction 
models (which takes into account the contributions of the 

single amino acids and the 1-2 and 1-3 interactions). Pre-
ferred residues at each position can be entered. 

 The output is arranged in a table and the input sequence 
is printed at the beginning of the results table. There are two 
ways to list the output peptides: (i) in ascending order of IC50 
(nM) values or (ii) according to their position in the input 
sequences. An IC50 cut-off value could be selected. Peptides 
with predicted binding affinities <500 nM are good binders, 
whereas those with affinities >5000 nM are considered non-
binders. If the user does not enter any value, all the peptides 
generated from the input sequence will be listed. The binding 
affinities of those with IC50 >5000 nM are not shown, and 
are replaced by “-“. Predicted –logIC50 values are also shown 
in the table output. There is an option for prediction of bind-
ing of mono- and di-amino acid mutations of a peptide. 
MHCPred takes a single nonamer peptide as the input, sub-
stitutes the amino acid at a user-specific position with each 
of the 20 amino acids and calculates the binding affinities of 
the new peptides. This option is useful in comparing the 
binding affinities of heteroclitic analogues of the test pep-
tide. According to the number of missing terms in the model, 
MHCPred calculates the confidence of prediction for each 
peptide as a normalized percentage. This feature helps the 
user to eliminate false-positive predictions and makes the 
prediction more reliable. 

EpiJen SERVER 

 The next generation of T cell epitope identification 
methods will focus on integrated multi-step approaches, 
which subsume proteasome cleavage, TAP transport and 
MHC binding. The advantages of such integrated methods 
are higher accuracy and a lower rate of false positive predic-
tions, although they may generate more false negative pre-
dictions due to the use of incomplete training sets or high 
thresholds for individual steps. We have developed a multi-
step algorithm for T cell epitope prediction, which we call 
EpiJen. The method is applied to a set of overlapping pep-
tides generated from a whole protein sequence and acts as a 
series of filters which successfully reduce the number of 
potential epitopes. The final set of peptides needed to be 
tested for epitopes rarely includes more than 5% of the 
whole sequence. We combine all additive models for binding 
affinities prediction to human MHC class I alleles and make 
them publicly available via the EpiJen server for T cell epi-
tope prediction (http://www.jenner.ac.uk/EpiJen) (Doytchi-
nova et al., 2006).  

 The dataflow in EpiJen is shown in Fig. (4). Initially, the 
protein is chopped into overlapping decamers and processed 
by a proteasome cleavage additive model. A previously de-
rived and tested p1p1’ model, as described above (Doytchi-
nova and Flower, 2006) is used. The model takes into ac-
count only the contributions of the residues next to the 
cleavage site: C-terminus and the next aa. Two thresholds, 
0.0 and 0.1, can be used here. Threshold 0.0 is recommended 
for alleles which prefer Phe or Trp at the C-terminus: HLA-
A*24, HLA-B*07, HLA-B*27, HLA-B*35, HLA-B*51 and 
HLA-B*53. The epitopes for other alleles are predicted accu-
rately at a threshold of 0.1. This initial step has a powerful 
filtering ability: between one half and two thirds of the true 
negatives were eliminated by this step. The “cleaved” pep-
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tides, present as nonamers, are then passed to the next filter: 
the TAP binding additive model. 

 The TAP binding additive model has been derived and 
tested previously (see above) (Doytchinova et al., 2004a). A 
threshold of 5.00 is recommended for both fully and partially 
TAP-dependent alleles. Pro and Asp at anchor position 2 has 
a strong negative effect on TAP binding (Doytchinova et al., 
2004a). For that reason, a threshold of 3.0 is recommended 
for epitopes binding to HLA-B*07, HLA-B*35, HLA-B*40, 
HLA-B*44, HLA-B*51 and HLA-B*53. The filtering ability 
of the TAP step is low. Up to 10% of the true negatives are 
eliminated here. The “transported” peptides move to the next 
filter: MHC binding.  

 EpiJen includes 18 additive models which can be used to 
predict binding to different HLA-A and B alleles. Certain 
models were developed for single alleles and others devel-
oped for allele families. Quantitative data (continuous values 
like IC50s) were available for certain alleles, for the rest only 
sequences of binders were known (discontinuous values). 
The additive models based on continuous values were de-
rived by multiple linear regression (MLR) and those based 
on discontinuous values by discriminant analysis (DA). The 
filtering ability of this step is significant: approximately 25-
30% of the true negatives are eliminated here. The thresholds 
for this step are 0.5 for the DA models and 5.3 for MLR 
models. These thresholds can not be altered by the user. 
They seek to reduce the number of false positives in long 
protein sequences.  

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (8). Dataflow in EpiJen. 

 All peptides which are presented by MHCs on the cell 
surface after being cleaved by the proteasome and trans-
ported by TAP could potentially be T cell epitopes. How-
ever, only a small number of all possible epitopes are actu-
ally immunogenic. To reduce the number of false positives 
we tested different thresholds, which we defined as percent-
ages of available peptides sourced by one protein. The top 
5% threshold performed best, giving 85% sensitivity; we 
recommend it and use it as a default value for this step. Op-
tional are thresholds 2, 3 and 4%.  

 A set of 160 epitopes and their source proteins were col-
lected from AntiJen (Toseland et al., 2005). They were re-
stricted by the human MHC allele families: HLA-A*01, 

HLA-A*02, HLA-A*03, HLA-A*11, HLA-A*24, HLA-
A*33, HLA-A*68, HLA-B*07, HLA-B*27, HLA-B*35, 
HLA-B*40, HLA-B*44, HLA-B*51 and HLA-B*53. Six 
epitopes were promiscuous. Only proteins consisting of less 
than 1000 amino acids were used in the study. The thresh-
olds were selected as follows: at step 1 (proteasome cleav-
age) a value of 0.0 was chosen for HLA-A*24, HLA-B*07, 
HLA-B*27, HLA-B*35, HLA-B*51 and HLA-B*53, and 
0.1 for the rest; at step 2 (TAP transport) a value of 3.0 for 
HLA-B*07, HLA-B*35, HLA-B*51 and HLA-B*53, and 
5.0 for the rest; at step 3 (MHC binding) a value of 0.5 was 
selected for HLA-A*24, HLA-B*27, HLA-B*40 and HLA-
B*44, and 5.3 for the rest. For the final step (epitope selec-
tion) four thresholds were tested: top 2% to 5%. As the num-
ber of non-epitopes generated from each protein was signifi-
cantly higher than the number of epitopes, only two parame-
ters – sensitivity ((true positives/(true positives + false nega-
tives)) and positive predictive value (PPV) ((true posi-
tives/(true positives + false positives)) – were used for com-
parison. Parameters accuracy ((true positives + true nega-
tives)/total) and specificity ((true negatives/(true negatives + 
false positives)) could be misleading. If 98% of the peptides 
in one source protein are non-epitopes, a model that simply 
predicts everything as non-epitope will not be very useful, 
yet it will nonetheless have an overall accuracy of 98% and 
a specificity of 100%.  

 The true positives were 141 (5% cutoff), 132 (4% cutoff), 
123 (3% cutoff) and 114 (2% cutoff). False negatives were 
25, 34, 43 and 52, while the false positives decreased from 
2743 to 2173, 1618 and 1060, respectively. The parameter 
sensitivity varies from 69% (at 2% cutoff) to 85% (at 5% 
cutoff). The parameter PPV diminishes from 10% (at 2% 
cutoff) to 5% (at 5% cutoff). Thus, our tests indicate that a 
5% threshold at the final epitope selection step is sufficient 
to generate an 85% epitope prediction. This means that by 
using EpiJen, one need only test 5% of the whole sequence 
in order to predict 85% of available epitopes.  

DISCUSSION 

 The identification of T-cell epitopes remains a critical 
step in the development of peptide-based vaccines (Luckey 
et al., 1998). The first step of such studies is usually in silico 
prediction of potential MHC binders from the sequence of a 
studied protein, followed by labor-, time- and resource-
consuming experiments to verify the natural processing, 
presentation and T-cell recognition of the predicted peptides. 
As the veracity of initial in silico predictions improves, so 
subsequent “wet lab” work becomes faster, more efficient, 
and, ultimately, more successful. A wide range of computer-
based algorithms has been developed to help predict T-cell 
epitopes (for reviews see Schirle et al., 2001; Golgberg et 
al., 2002; Flower, 2003). In the present review we summa-
rize some of our results, which were derived by applying the 
additive method to different immunological problems, like 
proteasome cleavage, TAP binding, MHC class I and class II 
binding and supermotif definitions.  

 The additive method is a QSAR technique. QSAR proce-
dures are a powerful, if under-used, tool for in silico predic-
tion in bioinformatics. QSAR has found much application, 
however, in computational drug design, where it can func-
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tion as either an engine of interpolation or extrapolation. In 
interpolation, it can describe the properties of novel or extant 
molecules, peptides in our case, within a window of meas-
ured properties, but it can also be used to explore beyond 
those boundaries, most often being used to enhance binding 
affinity. The property of extrapolation into novel property 
space is the property of QSAR we have exploited in the de-
sign of superbinders study.  

 In most of our papers we have shown that the interpola-
tive powers of our approach work effectively, capturing the 
essence of prediction (Doytchinova et al., 2002; Guan et al., 
2003a; Doytchinova and Flower, 2003a; Doytchinova and 
Flower. 2003b). Alternatively, the additive method can be 
used to effectively increase binding affinity in a rational and 
directed manner, allowing us to design a series of so-called 
superbinders and, in turn, to use these to explore the effect of 
systematic substitution of dominant anchor positions. The 
list of tolerated anchors can be extended to a much larger set 
than has been commonly envisaged. This has two main im-
plications. First, we need to refine our understanding of the 
role anchor residues play in peptide binding to MHCs. Sec-
ond, we need to develop more sophisticated models of bind-
ing than those offered by binding motifs as in silico predic-
tion devices. 

 The rational design of high or superbinding peptides is a 
technique with wide application in a variety of immunologi-
cal settings. It is a further vindication of the utility of our 
approach in the prediction of peptide-MHC binding affinity, 
the principal prerequisite for proteinacious epitopes. Peptides 
presented by HLA-A2, in particular, would be useful from a 
vaccination standpoint as they would give rise to immune 
responses in a high proportion of the HLA diverse popula-
tion. Perhaps more important, however, is the ability to engi-
neer epitopes with special properties dependent on enhanced 
or modulated affinity. These might include augmenting the 
immunogenicity of potential cancer vaccines derived from 
cancer antigen epitopes, or designing high affinity epitopes, 
responses to which are reported to be less dependent on CD4 
help (Franco et al., 1994). Alternatively, one could design 
effective and efficacious competitor peptides able to block 
detrimental responses, as has been done in a murine diabetes 
model (von Herrath et al., 1998).  

 We have demonstrated that systematic monosubstitution 
of high binding peptides produces peptides missing tradi-
tional anchors yet retaining high affinity (Doytchinova et al., 
2004b). The relative importance of the anchor residues 
should thus be rethought. One does not require traditional 
anchors if the rest of the peptide is sufficiently optimised, 
either artificially, as in this case, or by chance in naturally 
occurring epitopes. Instead, one should seek more sophisti-
cated and comprehensive models of binding, which are bet-
ter able to account for all such possibilities. This helps to 
explain why many observed epitopes are missed when using 
just anchor motif-based epitope prediction programs. Flexi-
bility as to which amino acids can be tolerated at the anchor 
positions increases the effective number of peptides that can 
be presented by a given HLA allele. This augments the 
chance that a T cell response can be mounted by every indi-
vidual to each antigen or pathogen. It also has other implica-
tions, eg. if multiple amino acids in an epitope can influence 

peptide – HLA interaction, this may increase opportunities 
for pathogen escape from CD8 responses via alteration of 
peptide binding to MHC (Borrow and Shaw, 1998). 

 Greatest advantages of the additive method and related 
quantitative matrix methods are their easy use and interpreta-
tion. All methods derived by us during recent years have 
been compiled and are freely accessible via our servers 
MHCPred and EpiJen. EpiJen offers many advantages, com-
pared to other integrated methods for T-cell epitope predic-
tion. First, a large quantity of experimental data (more than 
2500 peptides) has been used to develop the models. Second, 
based on the additive method EpiJen combines two well 
known, widely used methods in drug design (Doytchinova et 
al., 2002), which have generally proven to be both reliable 
and predictive: the Free-Wilson method (Free and Wilson, 
1964) and PLS (Wold, 1995). Finally, and most importantly, 
EpiJen uses its models as successive filters: negatives are 
eliminated at each step rather than their score being summed 
in order to exceed a global threshold. This is in contrast to 
alternative methods (Peters and Sette, 2005; Larsen et al., 
2005). The combined score, as used by SMM (Peters and 
Sette, 2005) and NetCTL (Larsen et al., 2005), obscures the 
final result, because a low (or even negative) TAP and/or 
proteasome score could be compensated for by a high MHC 
score. The cellular antigen processing pathway, as modeled 
in EpiJen, works in a hierarchical or successive manner not 
in parallel. Peptides that have been eliminated at any of the 
steps do not continue to the next step. EpiJen can thus be 
thought of as a more mechanistically meaningful model of 
overall antigen presentation than other available methods. 
EpiJen is both a more adaptable and a more flexible ap-
proach, which should prove a significant conceptual advan-
tage as combination methods, such as this, evolve in the 
coming years.  

 It is well known that “all models are wrong, yet some of 
them might be useful”. Informatic modelling, such as we 
describe, follows the accumulation of knowledge about a 
particular mechanism. As knowledge improves, so models 
will improve. Antigen processing is a very complicated cas-
cade of cellular events. It is clear that cleavage by the protea-
some is only one event in antigen presentation. There are 
many other events, and many of these are proteolytic in na-
ture. Analyses of peptide generation and T-cell epitopes ex-
pression in proteasome-inhibited cells suggest that cytoplas-
mic proteases other than proteasomes may also be involved 
in antigen processing pathway (Vinitsky et al., 1998; Luckey 
et al., 1998; Luckey et al., 2001). Tripeptidylpeptidase II 
(TPPII) was suggested to supply peptides because of its abil-
ity to cleave peptides in vitro and its upregulation in cells 
surviving partial proteasome inhibition (Geier et al., 1999). 
Leucine aminopeptidase was found to generate antigenic 
peptides from N-terminally extended precursors (Beninga et 
al., 1998). Puromycin sensitive animopeptidase and bleomy-
cin hydrolase were shown to trim N termini of synthetic pep-
tides (Stoltze et al., 2000). An enzyme located in the lumen 
in ER and called ERAAP (ER aminopeptidase associated 
with antigen processing) (Serwold et al., 2002) or ERAP1 
(ER aminopeptidase 1) (Saric et al., 2002; York et al., 2002), 
has been shown to be responsible for the final trimming of 
the N termini of peptides presented by MHC class I mole-
cules. Recently, it was shown that within the proteasome, 
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peptides could be formed from noncontiguous parts of the 
source protein (Hanada et al., 2004; Vigneron et al., 2004). 
The mechanism of this splicing is not fully understood.  

 Currently there is insufficient quantitative data about the 
role of the above mentioned events to allow a precise bioin-
formatic evaluation of their impact on the antigen processing 
pathway. Overall, it is clear that, ultimately, many more 
pathways, involving many more stages, will need to be in-
corporated into predictive methods if we wish to model the 
overall process accurately. Given current data, however, Epi-
Jen represents the most accurate and parsimonious approach 
to antigen prediction.  

 In conclusion, we have shown that our additive method is 
of undoubted utility for T-cell epitope prediction and can be 
used successfully for the design of novel high binding pep-
tides. Indeed, QSAR is a technique able to optimize molecu-
lar structure in order to deliver enhanced, reduced, or other-
wise modulated, biological properties of any variety that can 
be measured or classified. We could, for example, use it to 
optimize the MHC binding affinity of weakly affine pep-
tides, such as putative cancer vaccines. Further, it is equally 
appropriate for the analysis and manipulation of peptide-
MHC complex interaction with T cell receptors as it is pep-
tide affinity for MHC. It is thus a tool of general utility to the 
immunologist, be they looking to design or enhance epi-
topes, non-immunogenic competitor peptides, or T cell an-
tagonists.  
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ABBREVIATIONS 

AAM = Amino acids model 

AAIM = Amino acids and interactions model  

ABC = ATP-binding cassette  

AI = Artificial intelligence  

ANN = Artificial neuronal networks  

APC = Antigen presenting cell  

AROC = Area under curve sensitivity/1-specificity 

CV = Cross validation  

ER = Endoplasmic reticulum  

HLA = Human leukocyte antigen  

LFER = Linear free energy relationship  

LOO-CV = Leave one out cross validation  

MHC = Major histocompatibility complex  

MD = Molecular dynamics  

MLR = Multiple linear regression  

PC = Principal components  

PLS = Partial least squares  

QSAR = Quantitative structure - activity relationship 

ROC = Receiver operating characteristic  

SVM = Support vector machines  

TAP = Transporter associated with antigen processing 

TB = Tuberculosis 

TCR = T-cell receptor 
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