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ABSTRACT 

Objective: The success of new drug candidates is critically dependent 

on its pharmacokinetic (PK) behavior. Therefore the early prediction of 

PK parameters of new drug candidates became a vital step of drug 

development process. The study presents a new quantitative structure – 

pharmacokinetics relationship (QSPkR) for prediction of Vss for 

neutral and basic drugs. Methods: The dataset consisted of 407 drugs, 

separated into training set (n = 339) and external test set (n = 68). 

Chemical structures were encoded by 130 theoretical descriptors. 

Genetic algorithm and step wise multiple linear regression were  

applied for model generation. The models were evaluated by internal and external validation. 

Results: Significant, predictive and interpretable QSPkR model was developed with 

explained variance r
2
 = 0.547, cross-validated correlation coefficients q

2
LOO-CV = 0.505 and 

q
2

LGO-CV=0.519, external test set predictive coefficient r
2

pred = 0.556 and geometric mean fold 

error of prediction GMFEP = 1.89. The model was able to predict the Vss for 69% of the 

drugs in the external test set within the 2-fold error of experimental values. Conclusions: The 

model reveals the main molecular features governing Vss. Lipophilicity, basicity and the 

presence of aromatic rings contribute positively to Vss, while polarity, molecular size and 

hydrogen bonding ability disfavor Vss. The model shows fairly good predictivity for moderate 

and high-Vss drugs (with Vss in the range 0.7 – 10 L/kg) and poor performance for extremely 

high-Vss drugs which follow unique distribution patterns.  
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INTRODUCTION 

The volume of distribution (Vd) is important pharmacokinetic (PK) parameter relating the 

amount of the drug in the body and its plasma concentration. Vd rarely matches any anatomic 

space and varies between a few liters (for drugs confined mainly in plasma) and several 

thousand liters (e. g. hydroxychloroquine with Vss of 700 L/kg).
[1]

 Several types of Vd have 

been defined depending on the route of administration and the time of plasma concentration 

measurment.
[2]

 The most accurate and useful measure for drug distribution is the steady state 

volume of distribution following iv multiple administration (Vss), measured at the time when 

the rate of administration equals the rate of elimination. Vss is determined by the binding 

capacities of blood, organs and tissues and could be influenced by permeation and 

dissociation rates.
[3]

  

 

Vss is a key determinant of both maintaining and loading dose in multiple drug regimen.
[4]

 

Together with drug clearance, it determines drug half-life. Drugs with high Vss may require 

higher doses to maintain desired therapeutic concentration and may have a long residence in 

the body.  

 

It has been long realized that one of the main reasons for the failure of promising drug 

candidates is the lack of in vivo activity, most frequently due to improper PK behavior.
[5] 

Therefore the early optimization of the key PK parameters became an essential step in drug 

development process. Various approaches have been proposed for the prediction of Vss in 

human, based on in vivo data from preclinical species (allometric scaling and extrapolation to 

human), in vitro experiments – alone or combined with in vivo or theoretical parameters, and 

entirely in silico methods. The current state of the methodology has been thoroughly 

reviewed.
[6][7][8][9][10][11][12][13]

 One of the most convenient and throughputs tools for early 

prediction of PK parameters is quantitative structure – pharmacokinetics relationship 

(QSPkR) modeling. It can be based solely on easily computed molecular descriptors, allows 

predictions to be made even on virtual structures and enables screening of large databases of 

potential drug candidates with high efficiency with respect to time, labor and cost. In 

addition, QSPkR models may give valuable information about the main structural features 

governing any PK parameter and enables the design of molecules with acceptable, if not 

ideal, PK behavior.  

 

A good number of QSPkR for prediction of Vss using various statistical techniques have been 

proposed and they have been critically reviewed recently.
[14]

 There is an agreement, that 
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lipophilicity (expressed as logP or logD) affects positively Vss. However there are many 

examples for drugs with comparable lipophilicity parameter’s values and 4-5 fold differences 

in the Vss values. Most of the models contain descriptors discriminating between acidic and 

basic drugs implying that acidic drugs should have low Vss and basic drugs – high Vss.  

 

It is well known, that the drugs follow different distribution patterns depending on their 

ionization state. Bases have high affinity to phospholipid membranes due to interactions 

between cationic center and acidic head groups. They bind mostly to alpha-1 acid 

glycoprotein (AGP) and frequently to human serum albumin (HSA) and can be accumulated 

by ion trapping into lysosomes.
[15]

 About 65% of Vss of bases (on average) was supposed to 

be due to storage in fat tissue.
[3]

 Therefore, bases have the highest values of Vss. In contrast, 

acidic drugs are negatively charged at physiological pH 7.4 and frequently have low trans-

membrane permeability. Majority of them are highly bound to HSA. As all drug binding 

proteins are presented extravascularly, acids may have higher Vss than plasma or blood 

volume. However, on average, Vss of acids is lower than that of bases. Neutral drugs have 

moderate trans-membrane permeability and binding affinity to both HSA and AGP, 

depending on their lipophilicity.
[15]

 This is in accordance with the experimental values for Vss 

in the recently published Obach’s database summarizing data for the key PK parameters of 

669 drugs following iv administration.
[1]

 The Vss for acids (n = 132) varies between 0.04 and 

15 L/kg (mean 0.54, median 0.22); for neutral drugs (n = 145) – between 0.16 and 25 L/kg 

(mean 1.94, median 1.00) and for bases (n = 262) – between 0.073 and 140 L/kg (mean 5.90, 

median 2.45). 

 

It seems reasonable to construct separate QSPkR models with respect to the ionization state. 

Such models may identify the main structural features governing distribution and Vss of drugs 

of various types and may provide better predictive performance. The only reports on separate 

QSPkR modeling of Vss clearly demonstrated that Vss of bases and acids depends on different 

molecular features.
[16][17]

 The separate models have shown lower predictability as compared 

with the models for the whole dataset which may be due to the limited size of the datasets, 

inconsistent separation of the classes and unspecified measure of Vd as an end-point variable. 

Recently we reported a robust, predictive and interpretable QSPkRs for Vss of 132 acidic 

drugs.
[18]

 The present study is focused on QSPkR for Vss of basic and neutral drugs. 
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MATERIALS AND METHODS 

Datasets 

The dataset consisted of 407 drugs (262 basic and 145 neutral), extracted from Obach’s 

database.
[1]

 A drug was considered as neutral, if the fraction ionized as an acid (fA) or as a 

base (fB) at pH 7.4 didn’t exceed 3%. Drugs with fB > 3% were classified as bases provided 

that fB was considerably higher than fA. The fractions ionized at pH 7.4 were calculated as 

previously described.
[18] 

 

The mol-files of the drugs were derived from several public databases – Drug Bank, 

Chemical Book, or ChEBI.
[19][20][21]

 The end-point variable Vss was logarithmically 

transformed in order to achieve close to normal distribution. 

 

For model validation purposes the dataset was separated into training and external test set on 

the basis of the end-point variable values. To this end the molecules were arranged in an 

ascending order with respect to their Vss values and one of every six drugs was allocated to 

different subset. The first subset (n = 68) was left aside as an external test set and the other 

five (n = 339) were used as a training set for QSPkR model development. On the other hand, 

for leave-group-out cross-validation (LGO-CV), each subset in the training set was excluded 

once, a model was built on a training set composed of the other four subsets, and was tested 

on the compounds in the excluded subset.  

 

Molecular descriptors and variable selection 

Chemical structures of the compounds were encoded by 130 molecular descriptors calculated 

by ACD/logD version 9.08 (Advanced Chemistry Development Inc., Ontario, Canada) and 

MDL QSAR version 2.2 (MDL Information Systems Inc, San Leandro, CA). Several types of 

descriptors were computed: physicochemical (logP, logD7.4, PSA, dipole moment, 

polarizability), constitutional (number of atoms and groups of given type, rings, circles, 

hydrogen bond donors and acceptors, etc.); geometrical (volume, surface, ovality), 

electrotopological state and connectivity indices, etc. The most significant descriptors were 

selected in a three step procedure: 1. manual rejection of descriptors with non-zero values for 

less than 10 molecules; 2. filtering through genetic algorithm (GA); 3. Stepwise linear 

regression (SWR) with Fisher criteria F-to-enter 4.00 and F-to-remove 3.99. Both GA and 

SWR were implemented in the MDL QSAR package. 
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Development of QSPkR models for Vss 

Several QSPkR models were generated on the training test of 339 molecules using different 

combination of descriptors. Drugs, which logVss values were predicted with high residuals, 

not obeying normal distribution, were considered as outliers and removed before building of 

the final model. Several statistical metrics were used for assessment of the best fit: explained 

variance (r
2
), root mean squared error (RMSE), Fisher criteria F, etc.

[14]
    

 

Validation of generated QSPkR model 

Predictive ability of the developed QSPkR model for VDss was evaluated by internal 

validation on the training set – leave-one-out cross-validation (LOO-CV) and LGO-CV, as 

well as on the external test set not involved in any step of model development. The following 

statistical metrics were calculated: cross-validated coefficients (q
2

LOO-CV and q
2

LGO-CV), 

prediction coefficient for the external test set (r
2

pred), mean fold error of prediction (MFEP), 

geometric mean fold error of prediction (GMFEP), RMSE.
[14] 

QSPkR models were 

considered as predictive if they fulfilled the recently accepted criteria for q
2

LOO-CV > 0.5 and 

r
2

pred > 0.5.
[22] 

 

RESULTS 

The dataset used in the present study consisted of 407 basic and neutral drugs with Vss values 

spanning in four orders of magnitude: from 0.073L/kg (netilmicin) to 140 L/kg (chloroquine) 

with mean value of 4.49  6.53 and median 1.7. Respectively, logVss varied between -1.137 

and 2.146 (range 3.283), with mean 0.280 and median 0.230. The structures covered a broad 

chemical space. Molecular weight ranged between 76 and 1431 mol/L (mean 367  223 

mol/L) and logP varied between -5.72 and 8.89 (mean 1.99  2.22). For basic drugs the 

fraction ionized as a base at pH 7.4 varied between 0.037 and 1.00 with 58% almost 

completely ionized (fB > 95%). According to the Vss value, drugs can be classified in four 

groups: 

- Low Vss  0.7L/kg – 82 drugs (13.7% of the basic, 31.7% of the neutral). 

- Moderate Vss (0.7 – 2L/kg) – 149 drugs (31.3% of the basic, 46.2% of the neutral). 

- High Vss (2 – 10L/kg) – 132 drugs (39.7% of the basic, 20% of the neutral). 

- Very high Vss > 10L/kg – 44 drugs (15.3% of the basic, 2% of the neutral). 
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QSPkR model for Vss of neutral and basic drugs 

Numerous significant models were generated on the training set of 339 molecules using 

different combinations of descriptors. The best one in terms of statistics is given below:  

061.09xvch*)97.0(64.7Acnt_4intSHB*)016.0(040.0

G*)020.0(066.0SssssC*)015.0(0731.0acnt_SaasC*)009.0(041.0

Dipole*)006.0(017.0Acnt_10intSHB*)010.0(043.010xvch*)87.5(53.27

acnt_SssO*)013.0(055.0f*)046.0(321.0Plog*)011.0(079.0VDlog

min

Bss









n =320  r
2
 = 0.547 RMSE = 0.334 F = 33.83 

 

Nineteen drugs were identified as outliers and were removed before development of the final 

model. 

 

QSPkR model validation 

The cross-validation on the training set resulted in q
2

LOO-CV = 0.505 and q
2

LGO-CV = 0.519 ± 

0.045.  

 

The QSPkR model showed very good predictivity on the external test set of 68 molecules, not 

involved in any step of model development as proved by the statistical metrics: r
2

pred = 0.556, 

GMFEP 1.83, RMSE 0.338, accuracy at 2-fold error level = 69%, accuracy at  3-fold error 

level = 80%. Three drugs were suggested as outliers from the model. The plot of logVDss,obs 

vs. logVDss,pred is shown in Fig. 1.  

 

 

Figure 1: Observed vs. predicted by the QSPkR model values of logVss for the external 

test set.  
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DISCUSSION 

A number of QSPkRs for logVDss of basic and neutral drugs were developed on a training set 

of 339 molecules covering wide chemical and therapeutic space. A total of 130 descriptors of 

the chemical structure were calculated. GA, SWR and MLR were used for variable selection 

and model development. The best fit model was assessed by internal (LOO-CV and LGO-

CV) and external validation. The model is significant, robust and predictive with r
2
 = 0.547, 

q
2

LOO-CV = 0.505, q
2

LGO-CV = 0.5190.045 and external r
2

pred = 0.556, GMFEP = 1.83 and 

RMSE = 0.338. Statistical metrics meet the accepted criteria for good performing QSPkR 

models.
[22][23][24]

 It was able to predict 69% of the drugs in the external test set within the 2-

fold error and 80% - within the 3-fold error of experimental values. 

 

Descriptors in the QSPkR model have clear physical sense and give insight into the main 

structural features governing VDss of basic and neutral drugs. According to QSPkR, logP, fB, 

SaasC_acnt, xvch10, Gmin and SHBint10_acnt contribute positively to VDss. Lipophilicity, 

expressed with logP, appears to be the most important determinant of Vss, accounting for 

27% of the explained variance. 44% of low-Vss drugs have negative logP values, while for 

35% of high-Vss drugs and 86% of very high-Vss drugs logP > 3. This is reasonable as 

lipophilicity is a prerequisite for passive diffusion through cell membranes and interactions in 

various tissues, especially the fat tissue.  Another positive factor for Vss is basicity, expressed 

as fB. The presence of a strong basic center enables ion-pairs interactions with the charged 

acidic head-groups of membrane phospholipids, the binding to phosphatidylserine in the cell 

membranes in several tissues and ion trapping in lysosomes.
[3][15]

 As already shown, basic 

drugs have higher values of Vss compared with neutral drugs. The percentage of drugs with fB 

 0.9 increases from 34% (low-Vss group) to 72% (very high-Vss group). Descriptor 

SaasC_acnt represents the number of substituted aromatic C-atoms in the molecule. 

Molecules with high number of aasC atoms usually contain at least two aromatic rings. The 

10
th

 order valence connectivity index (xvch10) encodes information about the presence and 

electronic state of a 10-member ring system – usually represented by two fused aromatic 

rings. The presence of aromatic rings is a condition for occurrences of specific interactions at 

binding sites of tissue proteins such as CH- and - stacking, Van der Waals interactions, 

and hydrophobic interactions. Gmin represents the lowest E-state value in the molecule and 

corresponds to the most electrophile atom. This descriptor has low, negative values for C-

atoms, connected with large number of strong electronegative atoms (-CF3, -C(SO2NH2), 

etc.). High positive values of Gmin are observed for terminal C-atoms, connected with N-
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atoms, which are relatively strong basic centers. The highest values for Gmin were observed 

for amitriptyline, imipramine, desipramine, etc., which are relatively strong bases with pKa > 

9. Hence, positive value of Gmin also implies high basicity, favorable for extensive 

distribution. According to the model, SHBint4_Acnt (accounting for the number of HB 

acceptor – HB donor couples with 4-atom skeletal bond between donor and acceptor), affects 

positively Vss, however, used individually, the effect is negative. Hence, the effect of this 

descriptor on VDss is not perfectly clear.  

 

Descriptors Dipole, SssO_acnt, xvch9, SHBint10_acnt and SssssC affect negatively Vss. 

Dipole represents the dipole moment of the molecule. It is a measure of unequal distribution 

of the electron density and has higher values for large molecules with M > 1000 g/mol, 

extended molecules with a strong electrophile located peripherally, or fused structures like 

steroids. Polarity should not be confused with hydrophilicity as there are many drugs with 

both high Dipole and high logP value. The negative effect of polarity may be due to steric 

hindrances by crossing cell membranes and/or reduced ability for hydrophobic interactions 

with tissue constituents. Descriptor SssO_acnt represents the number of ether O-atoms in the 

molecule, which are potential hydrogen bond (HB) acceptors. HB ability affects negatively 

lipophilicity which may restrict trans-membrane transport. Similarly, the negative effect of 

SHBint10_Acnt (encoding the number of HB acceptor – HB donor couples with 10-atom 

skeletal bond between donor and acceptor) could be explained with a high HB ability of the 

molecule. Descriptor xvch9 (9
th

 order valence connectivity index) encodes information about 

the presence and electronic state of a 9-member ring system – represented by fused six- and 

five-member rings. This descriptor has low values for aromatic heterocyclic rings (containing 

at least two of N-atoms) and high values for non-aromatic rings. Hence, the presence of 

aliphatic fused rings disfavors Vss. SssssC encodes the sum of E-state values for quaternary C 

atoms. The value of SssssC depends on the number of ssssC atoms and the nature of the 

substituents. It varies from high negative values (for C-atom, connected with 2-3 

electronegative atoms or groups like F-, OH,), etc., to positive values (for C-atom, connected 

only to aliphatic C-atoms). The negative contribution of SssssC to logVss confirms the 

unfavorable impact of the presence of aliphatic C-atoms to drug Vss. Analysis of the dataset 

allowed defining a threshold for each descriptor as a condition for high value of Vss (Table 2). 
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Table 1: Percentage of drugs belonging to different Vss classes meeting the criteria for 

high Vss. 

Class Vss Positive criteria  Negative criteria 

 logP3 fB0.9 aasC>3 xvch10 Gmin>0 ssssC<0 SHBint4 ssO2 Dip>5 xvch9 SHBint10 logP<0 

low 13% 34% 32% 26% 7% 28% 44% 43% 47% 29% 28% 44% 

mod 27% 25% 29% 25% 21% 19% 40% 19% 42% 30% 15% 15% 

high 35% 48% 37% 31% 24% 37% 32% 25% 30% 28% 13% 5% 

very high 86% 72% 72% 56% 53% 28% 42% 28% 22% 17% 25% 0% 

 

The QSPkR model shows different predictive accuracy for the drugs with different Vss 

values:   

- Low Vss: GMFEP 2.19, Accuracy 52.4%; five outliers.  

- Moderate Vss: GMFEP 1.65, Accuracy 75.6%; one outlier. 

- High Vss: GMFEP 1.63, Accuracy 72.9%; five outliers 

- Very high Vss:   GMFEP 2.80, Accuracy 22.2%; eleven outliers. 

 

Predictive ability is fairly good for drugs with moderate and high Vss (in the range 0.7 – 10 

L/kg), allowing prediction of Vss of more than 70% of the drugs within the 2-fold error of 

experimental values. In contrast, the model shows poor performance for very high-Vss drugs 

identifying 25% of them as outliers. These drugs have extremely large Vss values (13 – 140 

L/kg) which implies considerable tissue accumulation and unique distribution patterns not 

captured by the model. The low predicted Vss of triamterene (Vss 13 L/kg, predicted 0.64 

L/kg) is mainly due to its low lipophilicity (logP 0.18). In addition, the drug is extensively 

bound in tissues in the central compartment and cleared by hepatic metabolism and biliary 

excretion.
[25][26]

 The extremely high Vss of azithromycine (Vss 33 L/kg, predicted 2.14 L/kg) 

and pentamidyne (Vss 53 L/kg, predicted 4.52 L/kg) and topixantrone (Vss 57 L/kg, predicted 

4.51 l/kg) is most probably due to the presence of a two strong basic centers in the 

molecule.
[15]

 Besides, extensive uptake and slow release from tissues have been suggested for 

the long drug half-life of azithrimycine.
[27]

 Pentamidine is a substrate of the organic cation 

transporters facilitating extensive distribution in kidneys, liver and bile.
[28]

 Topixantrone 

displays a prominent affinity for DNA.
[29] 

Chloroquine is the drug with the largest Vss in the 

dataset (Vss 140 L/kg, predicted 9.5 L/kg). It distributes widely in numerous tissues and 

accumulates in skin and eye with a slow release from the pigmented tissues.
[30i][31] 

Ion 

trapping was suggested as the main reason for chloroquine tissue accumulation.
[32]

 The main 

assumption by QSPkR modeling is passive diffusion across cell membranes and rapid 

distribution from tissues which is not always fulfilled in reality. The unique distribution 
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patterns of the extremely high-Vss drugs are the main reason for their under-prediction by 

developed QSPkR model. 

 

CONCLUSIONS 

Significant, predictive and interpretable QSPkR for Vss of basic and neutral drugs is 

developed on a dataset of 407 drugs. The model allows prediction of 69% of the drugs in an 

external test set within the two-fold error of the experimental values. It reveals the main 

molecular features governing Vss. Lipophilicity, basicity and the presence of aromatic rings to 

contribute positively to Vss, while polarity, molecular size and hydrogen bonding ability 

disfavor Vss. The model shows fairly good predictivity for moderate and high-Vss drugs (with 

Vss in the range 0.7 – 10 L/kg) and poor performance for extremely high-Vss drugs which are 

largely accumulated in tissues due to unique distribution patterns. 
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